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ABSTRACT  
Hybrid visual search tasks involve searching for multiple targets held in memory, but some targets 
are more memorable than others. Furthermore, some items are readily identified as being in the 
memory set, while others are readily identified as not being in the memory set; these may be 
considered to vary in their “hittability” and “rejectability”, respectively. In principle, both factors 
should impact error rates and reaction times in hybrid search. Using a set of 9 million trials from 
an online hybrid search game, we analyze participants’ errors and show that hittability and 
rejectability are largely separable. It is possible for items to be rejectable without being 
particularly hittable, and to be hittable without being particularly rejectable. Both factors are 
consistent across participants and stable across age, training, and performance. Rejectability 
strongly predicted reaction times in the search for new items, while hittability was more weakly 
associated with reaction times.
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Throughout our lives, we encounter a wide variety of 
images that are not all remembered equally well. We 
all have objects that we find uniquely easier to recall 
than others. Conversely, some objects may be particu
larly difficult to recall. It is easy to see how this difficulty 
in recognizing items as previously encountered might 
impact our ability to perform daily tasks. One can 
imagine, for example, going clothing shopping and 
accidentally repurchasing the exact same dress that 
you already have at home. Previous work on long- 
term memory for sets of images has shown that 
some items are intrinsically more memorable than 
others (e.g., Bainbridge et al., 2013; Bylinskii et al., 
2015). In other words, some items are more likely to 
be correctly identified as a member of the memorized 
set. Previous studies have consistently demonstrated 
that memorability is stable for stimuli such as scenes 
and faces across different observers (Bainbridge et al., 
2013; Khosla et al., 2015), but the precise factors deter
mining image memorability are still under investi
gation (Isola et al., 2014; Kramer et al., 2023).

Memorability is typically measured by having par
ticipants complete a visual recognition task, in which 

they are shown a series of images, one on each trial, 
and asked to indicate when an image is repeated. 
Responses are then aggregated across a large 
number of participants. Memorability can be calculated 
from the proportion of correct responses out of the 
repeated images (i.e., hit rate; Isola et al., 2011, 2014), 
though many studies subtract the false alarm rate (pro
portion of new images reported as old) from the pro
portion of hits to calculate a single memorability 
score in an effort to minimize measurement variability 
(Khosla et al., 2015). Other studies report hit rate and 
false alarm rate separately (e.g., Bainbridge et al., 
2013; Bainbridge & Rissman, 2018), in addition to 
reporting a single memorability score. Despite these 
different approaches to measuring memorability, con
sistent patterns emerge in which objects are more or 
less memorable across observers.

More recent work has separately analyzed the 
relationship between hit rates and correct rejection 
rates (i.e., proportion of correct responses on target- 
absent trials) to determine whether these capture dis
tinct object properties. In other words, are objects 
that are readily identified as being in the memory 
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set (i.e., items with low miss rates) also the same 
objects that are easily identified as not being in the 
memory set (i.e., items with low false alarm rates)? 
Using a recognition memory task, Zhao et al. (2023) 
found that hit rates and correct rejections for individ
ual items were not correlated with one another. In 
addition, while participants’ ratings of how frequently 
they encountered items in daily life were significantly 
associated with correct rejection rates (“rejectability”) 
for images, the same ratings did not correlate with hit 
rates (“hittability”). These findings provide evidence 
that these two properties are separable. Importantly, 
hittability is a property of old items, and rejectability 
is a property of new items. This distinction highlights 
the importance of examining both aspects of memory 
performance to fully understand the underlying 
factors.

In principle, this multifaceted nature of memorabil
ity should also impact how we interact with objects in 
a range of tasks that extend beyond simple recog
nition tasks. For instance, many daily tasks require 
us to use information about items stored in memory 
to search for an item (for example, searching 
grocery store shelves for the items needed for a 
recipe). In these sorts of hybrid search tasks, observers 
search for multiple types of targets held in memory, or 
for new items among distractors consisting of old 
items (Wolfe, 2012; Wolfe et al., 2015). If rejectability 
and hittability are indeed separable constructs, they 
should impact performance in hybrid search tasks in 
different ways, which would be seen in the types of 
errors that participants make. For example, if partici
pants search for new items among a set of previously 
seen items, items with poor hittability would produce 
consistently high miss rates across participants (i.e., 
participants would consistently mistake an old item 
for a new item). Moreover, we expect that hittability 
and rejectability should have distinct effects on par
ticipants’ reaction times in a hybrid search task, 
reflecting their ability to identify the search target. 
For example, if the task is to search for new items, 
items with poor rejectability (but not hittability) 
should elevate reaction times as participants would 
have difficulty identifying the target, while items 
with high rejectability would decrease reaction 
times. Conversely, if the task is to search for old 
items, the presence of items with poor hittability 
would elevate reaction times, while items with high 
hittability would produce faster responses. While 

previous work has examined how reaction times 
vary with memory and visual set size (e.g., Drew 
et al., 2017; Gronau et al., 2024; Wolfe et al., 2016), 
the impact of individual item properties (hittability 
and rejectability) on reaction times is less well 
understood.

Some evidence suggests that observers’ prior 
experience with items impacts hybrid search perform
ance only rather minimally. Wolfe et al. (2015) pre
viously tested whether the familiarity of distractor 
items impacts performance in a hybrid search task. 
In principle, if participants encounter distractors 
repeatedly when searching for old items, they might 
falsely select one of the “lures’, mistaking it for an 
item in the memory set. However, participants’ per
formance was largely unaffected by this type of fam
iliarity, based on repetition, regardless of whether the 
task was to search for an old item among repeatedly- 
seen distractors or to search for a new item among 
infrequently-seen distractors. Although participants 
were remarkably good at rejecting such lures within 
a hybrid search setting, one possibility is that hittabil
ity and rejectability represent more stable properties 
of objects, and that these could be reflected in the 
errors that participants make in a hybrid search task.

To examine hittability and rejectability in the 
context of a hybrid search task, we performed a retro
spective analysis of a large-scale dataset from the 
cognitive training app, Lumosity, provided by the 
company, Lumos Labs. One of their online games, 
Tidal Treasures (Figure 1), was selected for this study 
due to its close resemblance to previous hybrid 
search tasks (e.g., Wolfe et al., 2015). In Tidal Treas
ures, participants are instructed to select a new item 
from a set of distractor items that they had previously 
selected (i.e., a search for a new item on each trial). As 
the observer progresses through the game, all of the 
previously chosen items are presented as distractor 
objects, while new (previously unselected) objects 
are presented on each trial as targets, with the 
memory set growing on each trial (Figure 1). This 
evolving visual set, where participants must remem
ber the selected items, presents a novel opportunity 
to study object hittability, based on the set of remem
bered items. Items that participants mistakenly ident
ify as “new” when they are in the memory set indicate 
poor hittability. Simultaneously, the new items that 
are not selected enable the study of object rejectabil
ity within the same task. That is, items that 
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participants consistently fail to identify as “new” are 
those participants mistakenly believe to be “old” 
(i.e., in the memory set), indicating poor rejectability.

We note that classic signal detection models typi
cally classify responses relative to the items in the 
memory set (i.e., an item correctly classified as “old” 
that is in the memory would be a “hit”). For consist
ency with this literature, we also analyze hittability 
and rejectability with respect to the remembered 
set, even though the task requires participants to 
search for new items. Figure 2A and B provide an illus
tration of how we classified participants’ responses 
with respect to the memory set.

This dataset was collected over repeated sessions 
from nearly 10000 participants. The size and scope 
of the data allow us to examine how memorability 
and rejectability vary as a function of age, perform
ance, and training. Previous studies have demon
strated a strong relationship between cognitive 
decline and age (e.g., Brockmole & Logie, 2013; 
Kirova et al., 2015) which would impact overall per
formance in memory-based tasks. To the extent that 
memorability is related to high-level object proper
ties, such as typicality (e.g., Kramer et al., 2023; 
Vokey & Read, 1992) and meaningfulness (e.g., 
Brady & Störmer, 2022; Shoval et al., 2023a; Shoval 
et al., 2023b), memorability may vary between older 
and younger adults and differentially impact perform
ance in a hybrid search task. Additionally, this 

dataset allows us to examine the effect of training 
and practice. Do some items benefit more from 
repetitive exposure or practice? Do high-performing 
individuals make different errors than average-per
forming or low-performing individuals? Finally, as 
we practice and get better at memory tasks, do we 
become more resistant to the kinds of mistakes that 
we made initially when first exposed to objects 
we’ve never encountered?

Method

Lumosity dataset

The study was a retrospective analysis of a de-ident
ified dataset from Lumosity.com and provided by 
Lumos Labs. The dataset consisted of gameplay 
data from the game, “Tidal Treasures”. All gameplays 
were completed on desktop devices between 2014- 
01-01 and 2018-12-30 and consisted of the first 25 
gameplays of the game from all participants who 
had completed at least 25 gameplays. Analyzing 
these early gameplays allowed us to examine 
changes in error rates for individual items as partici
pants learned to play the game. The final dataset con
sisted of 9748 participants. Demographic details 
about the participants can be found in the sup
plemental materials (Figure S1). Briefly, participants 
were between 21–80 years old (M = 57.13; SD =  

Figure 1. Task design. (A) Participants are initially presented with three randomly selected objects and instructed to select one. In this 
example, they are shown a sailboat, a horseshoe crab, and a treasure chest. A white outline is shown around the selected object (the 
treasure chest). Note that an outline was only visible in the game if the participant hovered over a given item with their cursor (prior to 
clicking it) but was otherwise invisible. (B) Once selected, on the next display, the remaining two unselected objects (in this case, the 
sailboat and horseshoe crab) are removed and three new objects are added (Dungeness crab, trident, and seashell). The previously 
selected object (the treasure chest) remains on the next display in a randomly selected location. Participants are instructed to click on 
one of the newly presented objects. Selecting any new item would be correct (for example, the seashell), allowing the participant to 
continue. If the participant had incorrectly selected the old item (treasure chest), this would end the game. (C) This process is repeated 
on subsequent trials. The two unselected new items from the previous display (trident and Dungeness crab) have been removed and 
replaced with three new items: a sea urchin, and two different types of coral (the oval and spiny shape). Now both previously selected 
items (treasure chest and seashell) remain on screen but in new positions. Again, the participant must select one of the three new 
items to continue. In this example, the participant correctly selected the sea urchin, allowing gameplay to continue.
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12.28), with 69% identified as female and 31% male 
participants. The analysis of this data was approved 
by the Research Ethics Board at the University of 
Toronto (protocol #40461).

Stimuli and procedure

Participants completed a beach-themed hybrid 
search game in which they searched for a new item 
on every trial embedded among previously seen dis
tractors (see Figure 1). The object of the game was 

to collect as many unique new items as possible, 
without selecting the same item twice. Each game
play consisted of three consecutive attempts (which 
we will refer to as “rounds”) to reach this goal. A 
round ended when the participant collected 35 new 
items or when they made an error by selecting an 
old object they had already collected on that round. 
Items consisted of beach-themed objects (shells, 
seaweed, crabs, driftwood, etc.) and varied between 
the three rounds of the game (see Figure S2 in the 
Supplemental Materials for images of all the items 

Figure 2. (A). Hittability is a property of old items, such that an item rarely reported as new has high hittability, while an item fre
quently reported as new has poor hittability. (B) Conversely, rejectability is a property of new items; an item often reported as new has 
high rejectability, while an item rarely reported as new has poor rejectability. (C) Distribution of conditional error rates for old items in 
the first round of the game, as a measure of hittability. Items are sorted from high hittability (at the top), to low hittability (bottom). 
(D) Distribution of conditional error rates for new items for the same set of items, as a measure of rejectability. Items are sorted by 
rejectability as In (C). Colours correspond to the same items shown in panel C.
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used). The items shown within each round were 
drawn from a possible set of up to 35 unique items. 
However, there was some overlap in items across 
the three rounds (rounds 1 & 2 had 13 items in 
common between them, rounds 2 & 3 had 9 items 
in common, and round 1 & 3 had 8 in common). 
Each successive round used more challenging items, 
such that the items in the first round consisted of 
the largest variety of items by category (28 unique 
categories: anchor, coral, driftwood, sailboat, shell, 
etc.), the second had 13 unique categories, and the 
third consisted of just four categories. Obviously, 
these were choices made in the original game 
design, and a prospective study might be structured 
somewhat differently.

Items in each search display were arranged in an 
invisible 5-row x 7-column grid (approximately 
400 × 560 pixels for the whole grid, with 74 × 74 
pixels for each item, and a horizontal and vertical sep
aration of approximately 7 pixels on all sides). The full 
game display spanned 480 × 640 pixels, including a 
margin and additional game elements around the 
grid. The number of items on each display (i.e., trial) 
varied as described below. Each round of the game 
began with a display consisting of 3 randomly 
selected items (positioned in random locations on 
the grid, with the rest of the spots blank), and partici
pants were asked to select one item by clicking on it. 
The display was then cleared, and the next trial con
sisted of three new randomly selected items and 
the one previously selected item, with all item 
locations randomly shuffled. The participant was 
then asked to select an item that they had not pre
viously clicked on. The process repeated on each 
trial, such that each trial consisted of 3 new items 
(i.e., search targets) presented alongside all the pre
viously selected items (distractors), with the memory 
set size growing on each trial. Participants had an 
unlimited amount of time to select a new item on 
every trial. This continuous round terminated when 
the participant either made an error by clicking on a 
previously selected item or otherwise after a correct 
response once the screen was filled with all 35 poss
ible items.

Following each response, participants received 
feedback regarding accuracy in the form of a green 
checkmark or a red “x” overlaid on the item they 
had just selected (for correct and incorrect responses, 
respectively). An incorrect response would terminate 

the round, at which point, participants were shown 
a display of all the items they had selected, in the 
order they were chosen, with the duplicate selection 
highlighted. In the event of a correct response, the 
game immediately proceeded to the next trial. At 
the end of each round, participants manually initiated 
the next round by clicking a button labelled “next”. 
After round 3, participants were given the option to 
play the game again; this was counted as a separate 
gameplay.

To minimize repetition of the unselected search 
targets (i.e., unselected “new” items), the targets 
that were not selected on each trial were only 
repeated once all unselected items were shown 
once. Once all 35 items were presented as “new” 
items, the unselected items were then redisplayed fol
lowing the same pattern of 3 new items each trial. To 
minimize repetition, they were displayed in the same 
order that they were originally shown; for example, 
the first two items that weren’t selected on trial 1 
were the first to be displayed as “new” items again.

Each gameplay consisted of three consecutive 
rounds; round length varied based on performance 
and consisted of an average of 21.92 trials (SD =  
9.18) for round 1, 14.98 (SD = 7.74) for round 2 and 
13.96 (SD = 7.4316) for round 3. Together, the three 
rounds took an average of 3.12 minutes to complete. 
Consecutive gameplays were separated by a median 
of three days (SD = 7.26). We included participants 
who had completed at least 25 gameplays, resulting 
in 9,302,690 trials across all participants.

Analysis

Exclusions
Prior to analysis, we removed 0.74% of gameplays 
(0.44% of all trials), as these gameplays were from 
an older version of the game. In addition, to filter 
out excessively long response times, we excluded 
trials with reaction times greater than 30 s (0.61% of 
trials).

Error rates
Due to the structure of the game, most trials had 
three potential correct responses (i.e., participants 
could select any one of the three new items to 
advance to the next trial). Rarely, participants would 
advance to a set size of 34 or 35, in which there 
would be only two new items or only one new item 
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remaining in the set, respectively. Errors could occur 
when, instead of clicking on one of the new items 
on each trial, participants clicked on one of the old, 
previously selected items. The number of potential 
incorrect responses therefore increased with set 
size, varying from zero (on the first trial, in which 
they simply select an item) to 34 (when the set size 
reached 35).

Participants could make an error by selecting one 
of these old items, but errors can occur for different 
reasons. In some cases, an error could occur 
because participants forgot items that were held in 
memory (i.e., participants believed an item was new, 
when it was in fact old). In other cases, errors might 
occur when participants falsely remember a new 
item as being in the memory set (due to poor “reject
ability”), resulting in them being more likely to click 
on an actual old item.

We separately analyzed these sources of error for 
each of the 35 items in a given round to calculate 
both their respective hittability and rejectability. To 
calculate error rates based on item hittability, we cal
culated the number of trials on which the item was 
incorrectly chosen as “new”, divided by the number 
of times it appeared in the memory set on these 
trials (this normalization is meant to account for the 
fact that, due to the nature of the game, some 
items appeared more frequently than others). In a 
signal detection framework, this is analogous to the 
miss rate (relative to the memory set) for the item; 
however, as there is more than one way to make a 
correct (or incorrect) response in the game, it is not 
possible to calculate miss rates (or other signal detec
tion measures) directly. This provides a measure of 
item hittability; the items with largest proportion of 
these mistakes have the poorest hittability, and con
versely, those with the fewest have the highest 
hittability.

In addition, to examine how newly presented 
objects affect memory errors, we calculated each 
object’s error rate based on its “rejectability” – the 
likelihood that a new object would be falsely ident
ified as old. For each item, we calculated its error 
rate based on its rejectability, or the likelihood of 
the item being mistakenly identified as old when it 
was, in fact, new. To measure these types of errors, 
we counted the number of trials in which each item 
appeared as a new item when an incorrect response 
was made. To account for the uneven distribution of 

items due to the nature of the game, we normalized 
this by the total number of times the item appeared 
as new across all trials. If some objects are more 
difficult to reject than others, we would expect 
higher error rates when they are presented as new, 
leading to incorrect responses. In other words, this 
reflects the probability of making a mistake when 
identifying a new item, similar to its false alarm rate 
in relation to the memory set, providing a measure 
of “rejectability.” Objects frequently appearing as 
“new” during error trials had poor rejectability, 
meaning participants were hesitant to label them as 
new, even though they were not part of the 
memory set, resulting in errors. Therefore, items that 
rarely appeared as “new” in error trials were highly 
rejectable.

To summarize these error calculations, as shown in 
Figure 2A and C, hittability is a property of old items, 
while rejectability is a property of new items; these 
are measured from the conditional error rates for 
old and new items, respectively. Importantly, any 
given item could be a “new” or “old” item depending 
on the trial and gameplay. For both analyses, error 
rates were calculated separately for each item and 
round (i.e., if an item was used in both round 1 and 
round 2, we calculated separate hittability and reject
ability error rates for that item for each round). The 
three rounds of the game had different error rates, 
due to differences in the difficulty of the game (see 
Procedure). Therefore, to account for these differ
ences in error rates between the three rounds and 
analyze each item’s relative rejectability or hittability 
relative to the items in that round, we calculated a 
z-scored error rate for each item, relative to all of 
the items in that round (see Figure S3 for the raw 
error rates).

Item-based analysis of learning
We quantified changes in learning rate for individual 
items by calculating hittability- and rejectability- 
based error rates for each of the 25 gameplays 
across participants and fitted an exponential decay 
function to each set of error rates. We used a least- 
squares fitting procedure to fit a three-parameter 
function of the form:

Y = (C − A)× e− l×(x− 1) + A (1) 

where Y represents the error rate on gameplay x, C 
represents the intercept on the first gameplay, λ 
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corresponds to the decay rate, and A represents the 
asymptotic error rate.

Reaction time
To analyze the impact of rejectability and hittability 
on reaction time, we measured, for each item, the 
impact of its presence or absence on reaction time 
for a given trial. To do this, we calculated, for each 
item, the median reaction time when the item was 
present as a new item and the median reaction time 
when the item was absent as a new item, separately 
for each unique combination of set size (i.e., the 
number of items present in the screen), and accuracy 
(whether the response on that trial was correct or 
incorrect). We then subtracted the median reaction 
times on the item-absent trials from the reaction 
times on the item-present trials. To account for differ
ences in reaction times between different set sizes 
and accuracy levels (correct or incorrect trials), the 
resulting values were then z-scored within each set 
size and averaged. We correlated the resulting z- 
scores with the conditional error rates for new 
items. This analysis was repeated for the “old” items 
on each trial; we took the reaction time when the 
item was present as an old item minus the median 
reaction time when the item was absent as an old 
item, and we correlated the resulting z-scores with 
the conditional error rates for old items.

Results

Error rates

The task was designed such that as participants pro
gressed through the rounds, the game becomes 
more difficult by reducing the number of categories 
and increasing the number of exemplars per category. 
This effect can be seen in the average conditional 
error rates for old items, which increased monotoni
cally across the three rounds (mean for rounds 1-3: 
0.066, 0.097, 0.106; SD: 0.018, 0.019, 0.022). The 
average conditional error rates for new items also 
increased similarly across rounds (M: 0.057, 0.088, 
0.096; SD: 0.007, 0.012, 0.015).

Figure 2C and 2D show the distribution of con
ditional error rates for individual items shown in the 
first round (see Figure S3 in the supplemental 
materials for data from all rounds with labels), 
colour coded based on their conditional error rate 

when “old”. While individual items vary in their 
respective error rates, the items most prone to false 
memories (i.e., poor rejectability) were not the same 
as the most forgettable items (i.e., poor hittability). 
To quantify the relationship between these measures, 
we first z-scored the error rates for each item respect 
to the other items in the round to account for the 
differences in error rates between rounds. As shown 
in Figure 3a, across all three rounds of the game, cor
relating the z-scored conditional error rates for old vs. 
new items between matched pairs of items showed a 
negative relationship between the two measures 
(r(103) = −0.32, p = 0.0009). In other words, items 
that were more forgettable (i.e., prone to misses) 
were not also more prone to false alarms; they were 
in fact somewhat less prone to them. As shown in 
Figure 3b, separately correlating the items within 
each round revealed that this relationship was 
largely driven by the items in round 2 (r(33) = −0.64, 
p < .001), with a weaker association for the other 
two rounds (r(33) < −0.33, p > .05).

Consistency across age, practice, performance

Conditional error rates for old vs. new items were also 
well-correlated between participants, and stable 
between different age groups, levels of performance, 
and experience with the game. As shown in Figure 4, 
conditional error rates were highly consistent 
between the oldest (ages 68 - 80; top 20th percentile) 
and youngest (ages 21-49; bottom 20th percentile) 
participants (r(103) = 0.80, p < .001 for old items, 
r(103) = 0.91, p < .001 for new items).

These item-based effects were also resistant to 
practice across the 25 game sessions. Although par
ticipants’ performance improved over the course of 
repeated practice (measured as an improvement in 
run length; see Figure S4), items that were highly 
memorable (or rejectable) in the first five sessions 
were also memorable (or rejectable) in the last five 
sessions (Figure 5: r(103) = 0.66, p < .001 for old 
items, r(103) = 0.85, p < .001 for new items). Consist
ent with this, conditional error rates were also stable 
between high-performing and lower-performing 
participants (top 20% vs bottom 20%; Figure 6: 
r(103) = 0.49, p < .001 for old items, r(103) = 0.74, p  
< .001 for new items); similar correlations were also 
observed when comparing the top and bottom 20th 
percentiles of the younger age group (r(103) > 0.36 
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p < .001), and the older age group (r(103) > 0.59, 
p < .001) separately.

Item-based analysis of learning

Although we observed consistent patterns of error for 
early gameplays compared to later gameplays, the 
rate at which error rates changed for particular 
items varied considerably. Comparing error rates 
between the first five and last five gameplays 
(Figure 5) suggested that conditional error rates for 
old items were less stable than those for new items. 

We quantified this by calculating separate conditional 
error rates for old and new items for each of the 25 
gameplays across participants and fitted an exponen
tial decay function to each (see Figure S5 for individ
ual fits). Figure 7A shows the conditional error rates 
for old items for each of the 105 items across the 
three rounds as a function of gameplay number, 
expressed as a proportion of the error rate on the 
first gameplay for that item (i.e., a value of 0.4 indi
cates that the error rate is equal to 40% of the rate 
observed on the first gameplay). Items varied con
siderably in the change in error rate; final error rates 

Figure 3. (A) Scatter plot showing the relationship between conditional error rates for old and new items averaged across all game
plays for all users. Each point represents each of the 105 items, and the colours represent the three rounds (blue, red, and yellow, for 
rounds 1, 2, and 3). (B) Correlation coefficient for conditional error rates for old vs. new items, calculated across all three rounds, and 
for each round separately. Error bars represent 95% confidence intervals.

Figure 4. (A) Scatter plot showing the relationship between z-scored error rates for old items averaged across the youngest 20th 
percentile of users plotted against the oldest 20th percentile of users. Each point represents the average z-scored error rate of 
one of 105 items when appearing as “old”, and the colours represent the three rounds. (B) Scatter plot showing the relationship 
between error rates for new items across age groups, following the same conventions as in (A)
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ranged from 34% of the rate on the first gameplay, to 
an increase of 16% above the error rate on the first 
gameplay. Figure 7b shows the same analysis, based 
on conditional error rates for new items, where 
there was considerably less variation; final error 
rates ranged from 48%  – 79% of the error rate on 
the first gameplay. As shown in Figure 7c, the percen
tage change in error rates for new items were not cor
related with the percentage change in error rates for 
old items (z-scored within-round: r(103) = −0.15, p =  

0.14). The rate of change parameter, λ, was also not 
correlated between conditional error rates for old 
vs. new items (r(103) = 0.06, p = 0.52).

Effects of rejectability and hittability on reaction 
time

When searching for new items, the tendency to 
mistake a new item for an old one should elevate 
RTs; in these instances, participants failed to 

Figure 5. (A) Scatter plot showing the relationship between z-scored error rates for old items averaged across the first 5 gameplays 
and last 5 gameplays. Each point represents the average z-scored error rate of one of 105 items when appearing as “old”, and the 
colours represent the three rounds. (B) Scatter plot showing the relationship between error rates for new items across gameplays, 
following the same conventions as in (A)

Figure 6. (A) Scatter plot showing the relationship between z-scored error rates for old items averaged across the bottom 20th per
centile of user by performance (average run length) plotted against the upper 20th percentile of users. Each point represents the 
average z-scored conditional error rate of one of 105 items when appearing as “old”, averaged across all games, and the colours rep
resent the three rounds. (B) Scatter plot showing the relationship between error rates for new items across performance, following the 
same conventions as in (A)
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correctly identify one or more of the search targets 
and therefore should spend longer searching. Con
versely, the tendency to forget that an item is in 
the memory set might shorten RTs if participants 
mistake an old item for a new one (i.e., they 
mistake a distractor for a search target). Therefore, 
when searching for new items, the presence of an 
item with poor rejectability within the “new” set 
should increase reaction times, while the presence 
of an item with poor hittability in the “old” set 
should decrease reaction times. We tested these 
predictions by calculating the impact of the pres
ence of an item on reaction time (e.g., median reac
tion time when item present as a new item  – 
median reaction time when item is not present as 
a new item). The resulting values were z-scored sep
arately for each set size and separately for correct 
and incorrect trials. Figure 8 shows these results 
separated by accuracy and presence of the item in 
the “old” vs the “new” set.

As shown in Figure 8B and D, the presence of items 
with poor rejectability in the “new” set (the presence 
of items with high conditional error rates for new 
items) was associated with increased reaction time 
when the item was present, for both correct and 
incorrect trials (r(103) = 0.93, p < .001 and r(103) =  
0.93, p < .001). However, as shown in Figure 8A and 
C, the presence of items with poor hittability in the 
“old” set (i.e., high conditional error rates for old 
items) was not associated with decreased reaction 

times correct trials (r(103) = −0.04, p = 0.67), and was 
associated with a slight increase in reaction time on 
incorrect trials (r(103) = 0.22, p = 0.026).

Discussion

Previous work has shown that some items are more 
easily remembered than others (e.g., Bainbridge 
et al., 2013; Bylinskii et al., 2015) and that this may 
capture distinct aspects of memory performance – 
the ability to correctly identify an item as being in 
the memory set, and the ability to identify an item 
as not being in the memory set (Zhao et al., 2023). 
In this study, we evaluated these properties, hittability 
and rejectability, respectively, in the context of a 
hybrid search game. Our findings suggest a 
nuanced relationship between the likelihood of 
items being falsely identified as “new” or “old”. 
Notably, as observed in the error rates for individual 
items, items prone to false memories (poor rejectabil
ity) were not the same ones that participants forgot 
were in the memory set (poor hittability). This was 
also observed in the effects of learning on partici
pants’ errors; the rate of change in participants’ 
errors across gameplays was distinct for each of 
these two error types. Furthermore, we observed dis
tinct effects of the hittability and rejectability of each 
item on participants’ reaction times. The results of this 
study contribute to the broader discourse on memory 
and learning by demonstrating that hittability and 

Figure 7. (A) Conditional error rates for old items as a function of gameplay number, expressed as a proportion of the error on the first 
gameplay. Lines represent the best-fitting exponential decay function for each of the 105 items across all three rounds, and are 
coloured based on the change in the error rate for old items. (B) Conditional error rates for new items across gameplays, following 
the same conventions and colours as (A). (C) Relationship between the change in conditional error rates for old vs. new items. Points 
represent individual items and rounds 1, 2, and 3 are represented by blue, red, and yellow dots, respectively.
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rejectability are not simply two ends of the same 
spectrum but may reflect distinct cognitive processes.

Importantly, error rates based on the hittability and 
rejectability of items were highly consistent between 
individuals, and were well-correlated across age 
groups, training and practice. The consistency of hitt
ability and rejectability across different age groups 
adds an interesting layer to our understanding of cog
nitive aging. Despite a decrease in performance in 
memory-based tasks with age (Brockmole & Logie, 
2013; Kirova et al., 2015), both hittability and reject
ability scores remained highly correlated across our 
younger and older observers. While high-level 
factors such typicality (e.g., Kramer et al., 2023; Vokey 
& Read, 1992), distinctiveness (Nosofsky & Osth, 

2024), and meaningfulness (e.g., Brady & Störmer, 
2022; Shoval et al., 2023a; Shoval et al., 2023b) can 
predict memorability for specific items, these may 
not change substantially with age to produce substan
tial differences between younger and older adults, for 
either the conditional error rates for old or new items. 
In addition, hittability and rejectability were consistent 
across multiple sessions, as well as between high  – 
and low-performing observers, suggesting that these 
may be highly stable properties of objects within the 
context that they were tested.

Despite this degree of consistency, we observed 
variation in the learning rates for different items. 
Specifically, conditional error rates declined faster for 
some items compared to others, and this variation 

Figure 8. (A) Relationship between the conditional error rate for individual items when “old” and the impact of the presence of the 
corresponding item on RTs. Positive values on the y-axis indicate slower RTs on trials when the item is present as an “old” item com
pared to trials when it is absent. RTs are z-scored within each set size, and shown for correct trials only. Points indicate individual 
items, and colours represent the three rounds. (B) Relationship between the conditional error rate for new items and the impact 
of item presence on RTs (correct trials only), following the same conventions as (A). (C and D). Same as A & B, showing the relationship 
for trials in which the participant responded incorrectly.
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was larger for the error rates for old items compared to 
new items. Importantly, the changes in these two 
types of error rates were not correlated with each 
other, pointing to separate mechanisms underlying 
learning-based improvements in memory perform
ance. Understanding the sources of these different 
learning rates and what results in these differential 
changes in error rates would be an important avenue 
for future work.

Furthermore, in addition to demonstrating that hitt
ability and rejectability can be separable, we show that 
these properties have distinct effects on participants’ 
reaction time. Notably, items with poor rejectability 
produce a false memory effect, in that participants mis
takenly identify them as one of the items in the 
memory set. This failure to recognize them as newly 
presented objects results in reliable increases in reac
tion time (whether participants are correct or incor
rect), as they fail to identify their search target. In 
contrast, the presence of items with poor hittability 
did not affect reaction times on trials when partici
pants responded correctly, and slightly increased reac
tion times when participants responded incorrectly. 
These results contrast with previous work indicating 
that participants are remarkably good at rejecting fam
iliar “lures” in a hybrid search task, which minimally 
impact participants’ reaction time (Wolfe et al., 2015). 
It seems that while familiarity may not strongly 
impact participants’ performance in the search for 
new (or old) items, participants’ performance may be 
affected for certain classes of targets that are prone 
to being mistaken for distractors.

Despite evidence that hittability and rejectability 
are separable, we did observe a negative correlation 
between rejectability and conditional error rates for 
old items. This would suggest selection biases to 
choose certain objects and not others (i.e., a tendency 
to believe some items are “new” while others are “old”, 
regardless of whether they are in the memory set or 
not). In signal detection terms, this would translate 
into variations in the decision criterion (c) for each 
item  – i.e., willingness to say that an item is in the 
memory set. Interestingly, this relationship seems to 
depend on the context, such that the negative associ
ation was largely driven by round 2 and to some extent 
round 3, where items were more similar to each other. 
With a diverse set of objects, as shown in round 1, there 
was no association between these error rates. Global 
matching models like Retrieving Effectively from 

Memory (REM; Shiffrin & Steyvers, 1997) provide a 
good starting point to explain why these relationships 
might be dependent to the homogeneity of the image 
set. This class of models predict that as memory sets 
become more homogenous (i.e., similar to rounds 2 
or 3), they elicit stronger familiarity, which could 
increase the likelihood of participants reporting 
items as “old”. This highlights a complex and poten
tially relevant interaction between the homogeneity 
of the dataset and the response tendencies of partici
pants (Osth & Dennis, 2015).

One important consideration is that, due to the 
nature of the game, the items were all from a narrow 
set of categories (even for beach 1, which had the 
largest range of objects). While the data consists of 
items from a narrow set of categories, the hittability 
and rejectability estimates for each item were based 
on many thousands of observations, resulting in a 
high degree of precision for any individual item. In con
trast to this approach, previous work (Zhao et al., 2023) 
used fewer participants, but a wider range of objects to 
provide similar evidence that hits and correction rejec
tions are supported by different mechanisms. 
Together, these results provide converging evidence 
for the separability of these two processes. Neverthe
less, further work would be needed to establish the 
degree to which our results generalize to larger and 
more diverse sets of objects.

Together, these findings underscore the complex
ity of memorability and highlight the need for a 
nuanced approach in its study. Throughout this 
paper, we have shown the distinct impact rejectability 
has on reaction time, as well as the distinct influence 
of practice on hittability compared to rejectability. 
These results highlight the importance of separating 
different classes of errors to understand memory- 
based performance in a range of tasks that extend 
beyond single-item recognition.
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