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Abstract
Previous work has shown that, in many visual search and detection tasks, observers frequently miss rare but important tar-
gets, like weapons in bags or abnormalities in radiological images. These prior studies of the low-prevalence effect (LPE) 
use static stimuli and typically permitted observers to search at will. In contrast, many real-world tasks, like looking for 
dangerous behavior on the road, only afford observers a brief glimpse of a complex, changing scene before they must make 
a decision. Can the LPE be a factor in in dynamic, time-limited moments of real driving? To test this, we developed a novel 
hazard-detection task that preserves much of the perceptual richness and complexity of hazard detection in the real world, 
while allowing for experimental control over event prevalence. Observers viewed brief video clips of road scenes recorded 
from dashboard cameras and reported whether they saw a hazardous event. In separate sessions, the prevalence of these 
events was either high (50% of videos) or low (4%). Under low prevalence, observers missed hazards at more than twice the 
rate observed in the high-prevalence condition. Follow-up experiments demonstrate that this elevation of miss rate at low 
prevalence persists when participants were allowed to correct their responses, increases as hazards become increasingly 
rare (down to 1% prevalence) and is resistant to simple cognitive intervention (participant prebriefing). Together, our results 
demonstrate that the LPE generalizes to complex perceptual decisions in dynamic natural scenes, such as driving, where 
observers must monitor and respond to rare hazards.

Keywords Visual attention · Driving · Prevalence · Road hazards

Our survival hinges on our ability to detect and respond 
to dangerous events. Most of the time, these critical situ-
ations are rare. Driving is an important example, where 
hazards requiring a rapid response are relatively infrequent 
(e.g., the vehicle ahead of you suddenly braking; Dingus 
et al., 2016). The prevalence of these events can vary con-
siderably across environments and can take many forms. 
For example, the sudden appearance of pedestrians will 
be more common on a busy urban street than on a lonely 
highway. Here, we examine how the relative prevalence of 
road hazards affects our ability to respond to them. This 
can be seen as one way to examine prevalence effects in 
dynamic scenes more generally.

Our inability to notice infrequent events has been a 
major topic of research in cognitive psychology. Work in 
visual search has demonstrated the low-prevalence effect, 
or LPE, (Horowitz, 2017; J. M. Wolfe et al., 2005) in 
which observers frequently miss rare but important targets, 
including threats in luggage (J. M. Wolfe et al., 2013; J. M. 
Wolfe et al., 2007) and abnormalities in medical images 
(Evans et al., 2011; Evans et al., 2013). In these static 
visual search tasks, observers become less willing to say 
that targets are present as targets become rarer. Within a 
signal detection framework, this has been shown to reflect 
a shift toward a more conservative response criterion (c) 
rather than a change in sensitivity, or d′ (J. M. Wolfe et al., 
2007). Similar results are also well established in other 
domains. For example, decision theory defines an opti-
mal criterion based on the relative frequency of signal 
and noise events, combined with the payoffs associated 
with different responses (D. M. Green & Swets, 1966). In 
the vigilance literature, when participants must respond to 
events over an extended period (N. H. Mackworth, 1948; 
J. Mackworth, 1970), they show worse performance as 
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signal frequency decreases (Baddeley & Colquhoun, 1969; 
Broadbent & Gregory, 1965; Colquhoun, 1961).

There are situations where the reverse phenomenon is 
seen; where observers adopt a more liberal, rather than 
a more conservative criterion, as targets become rare. In 
particular, Levari et al. (2018) reported the phenomenon of 
prevalence-induced concept change (PICC), in which par-
ticipants’ definition of what constitutes a target expands as 
targets become increasingly rare. For example, when cat-
egorizing colored patches as blue or purple, patches that 
were ambiguous were more likely to be categorized as blue 
when blue targets were rare. More recently, these findings 
have been shown to depend on the feedback that participants 
receive on each trial (Lyu et al., 2021). Without any feedback 
on the accuracy of their responses, observers adopt a more 
liberal criterion (i.e., “I keep saying ‘purple,’ so perhaps I 
should say ‘blue’ more often). However, when provided with 
trial-by-trial feedback on response accuracy, they learn the 
true prevalence rate of the target and adopt a more conserva-
tive criterion.

How would target prevalence influence detection when 
the target was a transient event encountered in a dynamic 
scene, like a road hazard in a driving context? Drivers 
must perceive, comprehend, and respond to hazards within 
1,500–2,000 ms (M. Green, 2000). Our ability to do so is 
likely to rely on our ability to perceive the gist of a scene 
(Oliva, 2005) and to classify the kind of scene we are seeing 
based on a single brief glimpse (Greene & Oliva, 2009). On 
the road, we must do so while we move through the scene 
and it moves around us, likely making this perceptual task 
harder. Yet observers are able to accurately detect road haz-
ards having only glimpsed a dynamic scene for 200–300 ms 
(B. Wolfe et al., 2020), suggesting that the duration of visual 
input required for initial hazard detection is brief, relative to 
the time required to plan and execute a response.

Road hazard detection is made more complex by the het-
erogeneity of hazards in type and size (e.g., pedestrians, ani-
mals, vehicles, objects), temporal unpredictability, and vari-
ation in visual field location (i.e., hazards are generally on or 
near the road, but could, for instance, drop from above). This 
heterogeneity could actually help drivers detect infrequent 
hazards. Adding visual variability has been shown to reduce 
vigilance-related performance decrements, during simulated 
driving in monotonous environments (Thiffault & Bergeron, 
2003) and with simple laboratory stimuli (Thomson et al., 
2015). In contrast, other work has shown that as vigilance 
tasks become more cognitively demanding, vigilance-related 
performance decrements are larger (e.g., Parasuraman & 
Davies, 1977; Warm et al., 2008).

Previous work suggests that the LPE may be a factor in 
the detection of on-road targets. Drawing on studies of visual 
search under low prevalence conditions, Beanland and col-
leagues asked whether target prevalence could manipulate 

search performance in a driving simulator (Beanland et al., 
2014). Participants were asked to report every instance of 
a bus or motorcycle they saw while driving a route in the 
simulator, under conditions where buses or motorcycles 
were common or uncommon. Their participants were slower 
to detect low-prevalence targets, regardless of vehicle type. 
For example, when buses were prevalent and motorcycles 
were rare, observers were slower to identify the presence 
of a motorcycle.

The task of detecting and responding to road hazards as a 
general class of event is quite different from tasks in which 
the observer must detect a specific vehicle type (e.g., motor-
cycles). In fact, one might imagine that the diverse range of 
hazards might make an LPE more likely. In the experiments 
presented here, we show that there is a driving hazard LPE. 
It involves a shift in response criterion, apparently similar 
to the mechanisms involved in low prevalence visual search 
(J. M. Wolfe et al., 2007). This LPE is not due to motor 
errors (Fleck & Mitroff, 2007). And importantly, this effect 
is resistant to a participant briefing and is not reduced when 
participants are made aware of the effect.

There are certain challenges (ethical and otherwise) to 
studying prevalence effects in real-world driving situations, 
since near collisions are relatively rare. Moreover, experi-
mental design would be additionally complicated in an on-
road setting by the fact that hazard prevalence covaries with 
other environmental factors, like time of day and weather, to 
say nothing of safety considerations. A simulator would not 
provide the diversity of real-world hazards. Viewing driving 
videos, while there is some risk that the observer may adopt 
a passive viewing stance, may be the best of these options, 
balancing realism with practical constraints. Here we make 
use of a set of real road videos of naturally occurring hazards 
(B. Wolfe et al., 2020). This approach allows us to include 
much of the richness, visual complexity, and perceptual 
variability from the road, while still allowing us to maintain 
safety and experimental control over event prevalence.

Methods

In each of five experiments, we asked participants to detect 
hazardous situations (e.g., sudden braking, pedestrians, ani-
mals on the road; see Fig. 1) in brief video clips (333 ms) of 
real road scenes. First, Experiment 1 compares performance 
at hazard rates of 50% versus 4%. Results show an elevated 
proportion of missed targets at low prevalence, replicating a 
classic LPE (J. M. Wolfe et al., 2005) in a hazard-detection 
paradigm. In Experiments 2 and 3, we show that this effect 
is dependent on receiving trial-wise feedback (similar to Lyu 
et al., 2021). In Experiment 4, where participants could cor-
rect their initial responses (Fleck & Mitroff, 2007), we elimi-
nate motor errors as an explanation for our effect. Finally, in 
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Experiment 5, we take a step toward a more realistic hazard 
prevalence rate (10% vs. 1%), demonstrating that the effect 
scales as prevalence declines. In this experiment, we also 
show that these effects persist when observers are informed 
about the prevalence effect, suggesting a resistance to pre-
briefing and driver instruction.

All experiments shared a common experimental proce-
dure (described in Procedure, below), but varied in their par-
ticulars. Changes to this common procedure, like manipula-
tions to the feedback provided to participants or changes to 
the hazard prevalence in a given experiment, are described 
in the Additional Experiments section.

Participants

Participants were recruited online through Prolific (www. 
proli fic. co), a platform for human participant research. 
There were 16 participants per experiment in Experiments 
1–4 and 16 in each of two conditions of Experiment 5 for 
a total of 32. All participants were, by self-report, between 
the ages of 20 and 35, in possession of a valid driving 
license, had corrected to normal visual acuity, and were 
residents in Canada, the United States of America, or the 
United Kingdom. To ensure that a new set of participants 
was tested in each experiment, Prolific users who had previ-
ously completed one experiment were excluded from future 
experiments. The mean age across all experiments was 27.0 

years (SD = 4.4 years). The sample size of 16 was deter-
mined from the effect size measured in a pilot study with 
11 observers, which indicated that a minimum of seven par-
ticipants were necessary to detect a significant difference in 
criterion between the low (4%) and high (50%) prevalence 
conditions at 95% power (dz = 1.71, α = .05).

Procedures were approved by the Research Ethics Board 
at the University of Toronto, and all participants provided 
informed consent prior to participating in the experiment. 
Each experiment consisted of two sessions, each lasting 
approximately 30 minutes, and participants were paid £4.50 
per session on Prolific, with a completion bonus of £8.50 for 
finishing both sessions.

Each experiment was pre-registered on the Open Sci-
ence Framework (OSF) online prior to data collection. The 
preregistration information, and all materials for this study 
(stimuli, experimental code, anonymized data, and analysis 
scripts) are available from OSF (https:// osf. io/ r9uk7).

Stimuli

The experiment was conducted online and programmed 
using PsychoPy/PsychoJS (Version 2020.2; Peirce et al., 
2019), and hosted online on Pavlovia, based on results 
showing that PsychoPy/PsychoJS was the lowest latency 
platform for online studies (Bridges et al., 2020). Partici-
pants were required to complete the study on a desktop 

Fig. 1  a Sequence of events in each trial. Participants were shown a 
random noise mask for 250 ms, followed by a 333-ms video clip of 
a road video recorded from a dashboard camera. Following a post-
stimulus mask (250 ms), participants reported whether the video 
contained a hazard by pressing the up or down arrow key. Partici-
pants received feedback regarding the accuracy of their response (all 
Experiments except 2 and 3; see Methods). The frequency of hazard-

present videos was varied between conditions (rates of 50% vs. 4% 
in Experiments 1–4, and 1% vs. 10% in Experiment 5). b Examples 
of hazardous road events used in the experiments (e.g., unsafe driv-
ing by other vehicles in the lane of travel and pedestrians or animals 
in the roadway). All videos showed real road scenes and covered a 
diverse range of settings (urban, highway, rural), times of day, and 
weather conditions

http://www.prolific.co
http://www.prolific.co
https://osf.io/r9uk7
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or laptop computer (i.e., the experiment was disabled on 
mobile and tablet devices).

The videos used in the study were created from an 
extended version of the Road Hazard Stimulus set (available 
at https:// osf. io/ uq6pc/). This stimulus set consists of for-
ward-facing road videos recorded from dashboard cameras, 
sourced from YouTube, in collaboration with the Moments 
project at MIT (Monfort et al., 2019; see B. Wolfe et al., 
2020, for full details of the stimulus set). Briefly, the video 
set consists of a wide variety of road hazards (including 
uncontrolled objects, pedestrians, animals, and other vehi-
cles) captured in a range of road environments (e.g., high-
way, city streets, rural roads), weather conditions, and times 
of day. Hazards were defined as situations that required an 
immediate driver response, and videos were selected to max-
imize hazard variability. The videos had been previously 
annotated for the time of hazard onset as well as the first 
time of visible driver response (as detailed in B. Wolfe et al., 
2020). To control for environmental factors, a corresponding 
set of matched nonhazard videos were taken from epochs 
in the hazardous source video at least 10 s prior to hazard 
onset, whenever possible. To reach the number of videos 
required for this study, the original Road Hazard Stimulus 
set was supplemented with additional videos from online 
sources (e.g., YouTube), which were processed and anno-
tated according to the same procedure and specifications as 
the original set. This extended version of the Road Hazard 
Stimulus set consisted of 436 video clips containing haz-
ardous events (8 s in duration) and 316 nonhazard videos 
(ranging from 1.4 to 22.7 s in duration). This heterogeneous 
stimulus set allows us to ask general cognitive questions (in 
this case, about the detection of rare events) using dynamic 
natural scenes. If one wanted to draw conclusions about spe-
cific road environments (e.g., specific types of infrastructure 
or other factors like driving on the left vs. the right), a more 
focused stimulus set would be required.

Finally, to produce the videos used in the experiment, this 
stimulus set was broken up into segments that were 333-ms 
long. For the hazard-present condition, these video segments 
were taken from the 333 ms immediately preceding the anno-
tated onset of the driver response in each video. For the haz-
ard-absent condition, these video segments were taken from 
333-ms epochs every 3 s in each clip. The final set consisted 
of 436 unique hazard-present and 925 unique hazard-absent 
clips. The audio was removed from each video, and all videos 
had a resolution of 1,280 × 720 pixels and a frame rate of 30 
frames per second. Sample videos used in the experiment can 
be accessed online (https:// osf. io/ r9uk7/ files/).

Procedure

Procedures were adapted from a previous hazard-detec-
tion task (B. Wolfe et al., 2020). At the onset of each trial, 

observers were shown a random noise mask (1,280 × 720 
pixels) for 250 ms, consisting of a grid of 36 × 64 squares, 
20 pixels high each, with a random grayscale intensity from 
0 to 255. Following the mask, observers viewed the road 
video for 333 ms (10 video frames at 30 fps). This dura-
tion was selected to be longer than the duration required for 
80% hazard-detection accuracy for the majority of observers, 
based on a separate online replication of the study described 
in (B. Wolfe et al., 2020) with age-matched observers. In this 
previous study, the mean duration threshold was 228 ms. 
Here, we added an additional 105 ms of viewing time to this 
threshold (for a total duration of 333 ms), presenting stimuli 
at approximately 1.5 times the mean duration threshold for 
this task. If one uses much longer durations, the videos begin 
to include the onset of the driver’s response. This response 
produces cues to the presence of a hazard (e.g., change in 
optic flow from the driver suddenly braking, or from the 
vehicle swerving) that would confound our measure of haz-
ard detection with a measure of the detection of the response 
to the hazard. Extending the clip earlier in time merely adds 
“normal” stimulus time to the clip. It does help to set a con-
text, but this additional contextual information seems to have 
a negligible effect on hazard-detection tasks using the same 
video stimuli (B. Wolfe et al., 2020).

In the high-prevalence condition, 50% of the road videos 
had a hazard (220 out of 440), as used in previous studies 
(B. Wolfe et al., 2020), and in the low-prevalence condition, 
4% of the road videos had a hazard (20 out of 500). Haz-
ard and nonhazard videos were randomly interleaved, and 
a given hazard or nonhazard video was selected randomly 
on each trial from the set of videos which had not been 
shown to the observer. Following a second (poststimulus) 
mask, shown for 250 ms, observers reported whether or not 
a hazard was present using the up and down arrow keys (up: 
hazard absent, down: hazard present). Hazardous situations 
were defined to participants as events “that would require 
your response in an on-road situation.” Participants were 
provided with examples (e.g., sudden braking, near colli-
sions, pedestrians, animals) at the beginning of the experi-
ment, but were informed that hazards would not be limited to 
these examples. After indicating their response, participants 
received feedback on their accuracy after each trial, where 
they were shown a screen with the text “correct” or “incor-
rect” for 500 ms. The next trial began automatically after 
a gray screen shown for 500 ms, plus any additional time 
required for loading the next video. No road video was seen 
more than once by the same participant.

To familiarize observers with the hazards that would be 
shown, at the beginning of each session, participants completed 
40 practice trials at 50% prevalence and a 1,000-ms video dura-
tion with the same trial-wise feedback. Following the practice, 
for low- and high-prevalence conditions, respectively, partici-
pants were informed that “unlike the practice, hazards will now 

https://osf.io/uq6pc/
https://osf.io/r9uk7/files/
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be relatively rare,” or “hazards will appear frequently, like the 
practice,” but were not given any further information as to their 
frequency. Participants were continuously shown a progress bar 
above the video indicating the proportion of the session com-
pleted. Every 60 trials, participants were given the opportunity 
to take a break and were shown a screen indicating their overall 
percentage accuracy up until that point.

As a data quality measure, and to remove potential auto-
mated (i.e., nonhuman) responders, each session included 40 
catch trials, randomly interleaved, in which observers were 
given an orthogonal scene discrimination task. These trials 
followed the same procedure as the main task, except the road 
video was replaced with a 1,000-ms video clip of a nondriv-
ing scene, and participants were required to report whether 
the scene was indoor or outdoor. These clips were sourced 
from YouTube and public-domain stock footage websites (e.g., 
Pexels. com), and composed of a range of everyday settings 
(e.g., living room, beach, forest, library) and activities (e.g., 
cooking, hiking, gardening). After the video, participants were 
shown a screen that indicated the instructions for catch trials 
(i.e., to press the up arrow key to indicate an outdoor video, 
down arrow key for an indoor video). Each session included 20 
indoor and 20 outdoor videos, and each video was randomly 
selected from a full set of 80 videos across the two sessions.

Each participant completed the low- and high-prevalence 
conditions (580 and 520 trials, respectively, including the 40 
catch trials and 40 practice trials) in two sessions on differ-
ent days, with the order randomized across participants. The 
two sessions were separated by at least one day, but subjects 
were given up to a week after finishing Session 1 to complete 
Session 2. No video clips were repeated across the two ses-
sions within the same participant.

Additional experiments

The procedures for Experiment 1 followed the general 
method described above. The remaining experiments were 
modified from this method, with the differences as follows.

Experiments 2 and 3: Feedback manipulations

In Experiment 2 (no feedback), instead of receiving feedback 
regarding accuracy on every trial, observers were no longer given 
any trial-wise feedback. The experiment proceeded to the next trial 
following a 500-ms gray screen. In Experiment 3 (partial feed-
back), instead of receiving feedback regarding accuracy on every 
trial, observers only received feedback for missed hazards. In other 
words, if they responded “hazard absent” on a hazard-present trial, 
they were shown a screen indicating that they missed a hazard.

In both Experiments 2 and 3, as in Experiment 1, par-
ticipants were still shown a screen every 60 trials, indicat-
ing the total proportion correct in all trials up to that point. 

All other aspects of the main experiment were the same in 
Experiments 2 and 3.

Experiment 4: Response correction

After each trial, observers were given the opportunity to cor-
rect their response. After pressing the up or down arrow key 
(to indicate a hazard-absent or hazard-present trial, respec-
tively), observers were asked either to (1) press the space 
bar to continue, or (2) press “x” to change their previous 
response. This was intended to give observers the opportu-
nity to correct any potential motor errors. For consistency in 
our data quality measure across experiments, observers were 
not given the opportunity to correct their responses on catch 
trials. Observers received feedback regarding their accuracy 
on each trial (following any corrections if applicable).

Experiment 5: Lower prevalence and participant 
prebriefing

Each participant completed two prevalence conditions, with 
lower prevalence levels than used previously (10% vs. 1% 
instead of 50% vs. 4%). The 10% condition consisted of 400 
road videos (40 containing a hazard, 360 without a hazard), 
and the 1% condition consisted of 500 road videos (five con-
taining a hazard, 495 without a hazard). As before, each 
of these conditions included an additional 40 catch trials 
involving an indoor/outdoor scene discrimination task, and 
all participants completed a 40-trial practice at 50% preva-
lence before starting each session of the experiment. The 
total number of trials in the 10% and 1% sessions (including 
the catch trials and practice) were 480 and 580, respectively.

In addition, we included a prebriefing manipulation to vary 
participants’ knowledge of the prevalence effect. Participants 
were randomly assigned to one of two groups (with 16 partici-
pants each): one group was not given any information about the 
nature of the prevalence effect (identical to our previous experi-
ments), and the other group was informed about the prevalence 
effect and instructed to avoid it. The latter group was shown 
instruction screens (in between the practice and beginning the 
experiment) in each session with the following text: “Research 
has shown that people often miss, or fail to notice, rare events 
(like a hazard on the road). It is important that you look for the 
rare hazards among these videos. Remember: if you don’t find 
it often, you often don’t find it.” As in the previous experiments, 
both groups in the 1% and 10% conditions were informed that 
“unlike the practice, hazards will be relatively rare.”

Analysis

Each observer’s data were assessed for overall quality 
using two preregistered inclusion criteria. First, observers 

http://pexels.com
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needed to perform the catch trials (the indoor/outdoor scene 
discrimination task) at 85% accuracy or higher (note that 
chance is 50% in a two alternative forced choice task). Sec-
ond, data from any observers who did not complete both 
sessions were discarded. These observers were replaced 
until we had a complete set of data (16 participants each 
in Experiments 1–4, and 32 in Experiment 5). Across all 
experiments, participants completed the catch trials with 
a mean accuracy of 98.4% (SD = 2.1%), and no partici-
pants performed below the 85% minimum. One participant 
in Experiment 2 and one participant in Experiment 4 were 
replaced for not completing both sessions. In Experiment 
5, one additional participant’s data were removed from the 
analysis, and replaced with another participant for exceed-
ing the maximum session duration allocated by Prolific (87 
minutes for a 30-minute session). In total, three participants 
of 96 were replaced across the five experiments.

For each participant and prevalence condition, we cal-
culated the miss rate as the proportion of hazard-absent 
responses out of the total number of hazard-present trials. 
The false alarm rate was equal to the proportion of hazard-
present responses out of the total number of hazard-absent 
trials. We additionally calculated observers’ sensitivity (d′) 
and criterion in each condition using a signal detection 
analysis. To handle extreme values (e.g., hit or false-alarm 
rates of 0% or 100%), we calculated adjusted hit and false-
alarm rates for all participants using the log-linear method 
described in (Hautus, 1995). Sensitivity (d′) was then calcu-
lated as norminv(hitadj) − norminv(false alarmadj). Criterion 
(c) was calculated as (norminv(hitadj) + norminv(false alar-
madj)/−2. Positive criterion values indicate a larger propor-
tion of hazard-absent responses, negative values indicate a 
larger proportion of hazard-present responses, and values 
near zero indicate an equal proportion of each.

In Experiments 1–4, participants’ error rates were ana-
lyzed using separate 2 (prevalence: low vs. high) × 2 (error 
type: misses vs. false alarms) × 2 (session order: low preva-
lence first or second) mixed-model ANOVAs. Prevalence 
and error type were within-subjects factors, and session 
order was a between-subjects factor. Effects of prevalence 
on hits and false alarms were followed up separately with 
pairwise contrasts. Sensitivity (d′) and criterion (c) were 
analyzed with 2 (prevalence condition) × 2 (session order) 
mixed-model ANOVAs. For Experiment 5, we included 
prebriefing condition (with or without) as a between-sub-
jects factor. We note that the inclusion of session order as 
a between-subjects factor in these models was not preregis-
tered but was added to account for any possible order effects 
on participants’ performance. However, we note that session 
order did not significantly modulate the prevalence effect 
in most experiments (for Experiments 1–4, the three-way 
(Order × Prevalence × Error Type) interactions on error rate 
were all non-significant, F(1, 14) < 2.2, p > .16, and there 

were no significant two-way Order × Prevalence effects on 
criterion, F(1, 14) < 3.9, p > .07. In Experiment 5, there was 
a significant interaction between session order and criterion, 
F(1, 28) = 11.88, p = .002, indicating that participants who 
completed the 10% prevalence session first had a larger cri-
terion shift (i.e., larger prevalence effect) between the 1% 
and 10% prevalence conditions (criterion difference of 0.63 
vs. 0.26).

Results

Experiment 1

In Experiment 1, we observed significant main effects of 
both prevalence, F(1, 14) = 9.27, p = .009, ηp

2 = .40, and 
error type, F(1, 14) = 65.5, p < .001, ηp

2 = .82, which 
were qualified by a Prevalence × Error Type interaction, 
F(1, 14) = 44.75, p < .001, ηp

2 = .76, consistent with the 
low-prevalence effect. When hazardous events were rare 
(4%), participants missed 39.7% of them, more than twice 
the rate observed in the high prevalence (50%) condition 
(18.2%), t(14) = 4.94 p < .001 (Fig. 2a). Conversely, the 
false-alarm rate was reduced at low prevalence (1.4% vs. 
8.6%), t(14) = 9.46, p < .001 (Fig. 2b). Consistent with 
prior findings (J. M. Wolfe et al., 2007), response criterion 
became more conservative (more hazard-absent responses: 
c = 0.99 vs. c = 0.24), t(14) = 11.1, p < .001 (Fig. 2c), and 
d' did not change significantly (d′ = 2.53 vs. d′ = 2.31), 
t(14) = 1.83, p = .09 (Fig. 2d).

One possibility is that that the low-prevalence effect could 
be an artifact of different numbers of target-present trials 
between conditions. At the very least, using only 20 hazard-
present trials at low prevalence is likely to increase the varia-
bility in error rates, relative to the high-prevalence condition, 
which had 220 hazard-present trials. More problematically, 
participants may also be less familiar with hazard present 
trials in the low-prevalence condition, and this might induce 
some systematic bias. To address these possibilities, we sep-
arately analyzed only the first 40 trials that the participants 
saw in the 50% prevalence condition. These 40 trials contain 
20 hazards on average. As shown in Fig. S1 in the Supple-
mental Information, we observed a similar low-prevalence 
effect in Experiment 1 (39.7% vs. 18.9%) and, indeed, across 
all of our experiments after equating the number of hazard-
present videos between conditions. This result aligns with 
similar analyses in visual search (J. M. Wolfe et al., 2005), 
and indicates that our results are unlikely to be an artifact of 
differences in the number of target-present trials.

Another analytic consideration is that the relatively 
low proportion of false alarms at low prevalence could, in 
principle, produce unreliable estimates of d′ due to a floor 
effect (Thomson et al., 2016). However, we attribute the 
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increase in misses at low prevalence to a criterion shift, 
rather than a decrease in d′, for two reasons. First, given 
the large number of trials used to estimate false alarm 
rates, this criterion shift was highly consistent across par-
ticipants—at low prevalence, we observed an increase in 
miss rate for 14 of 16 participants and a drop in false-
alarm rates in all 16 participants. Moreover, the observed 
decrease in hit rate at low prevalence (z-transformed 

values for high vs. low: 0.90 vs. 0.25, a difference of 
0.65) was accompanied by a commensurate decrease in 
false-alarm rate (−1.36 vs. −2.17, a difference of 0.81). 
Second, if we did have a floor effect in false alarm rates, 
this would produce an underestimate of d′ as prevalence 
decreases. Given that d′ is similar across our two preva-
lence conditions, a correction to any underestimate would 
produce higher (not lower) d′ values at low prevalence.

Fig. 2  Miss rates, false-alarm rates, criterion, and sensitivity for 
Experiments 1–5. a Miss rates in each experiment. In Experiments 
1–3 (left panel), we varied the feedback provided to participants. 
When feedback was provided on each trial (Experiment 1), observ-
ers missed a significantly greater proportion of hazards under low 
prevalence (green) compared with high prevalence (purple). This 
effect was eliminated when no trial-wise feedback was provided 
(Experiment 2) and reduced when feedback was only provided 
for missed hazards (Experiment 3). In addition, miss rates were 
significantly higher under low (compared with high) prevalence 
when participants were given the opportunity to correct any poten-
tial motor errors (“finger errors”; Experiment 4). Finally, miss rates 
were significantly higher in Experiment 5, with 1% (teal) compared 

with 10% (coral) prevalence, with no interaction between prebrief-
ing conditions. b False-alarm rates were significantly higher under 
high prevalence compared with low prevalence in each experiment, 
except, as expected, for Experiment 2 (in which no feedback was pro-
vided). c Consistent with the pattern of miss and false-alarm rates, 
we observed significantly higher criterion values in each experi-
ment under the lower prevalence condition compared with the higher 
prevalence condition, except for Experiment 2, in which no trial-wise 
feedback was provided. d Sensitivity (d′) was similar, and not sig-
nificantly different between the low- and high-prevalence conditions 
in most experiments (for Experiments 1, 2, 5), though it was signifi-
cantly higher under low prevalence in Experiments 3 and 4. (Color 
figure online)
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Our study was diverse in the demographics of its 
participants and its images. Participants were from the 
U.S., Canada, and the UK The stimuli included both left-
sided and right-sided driving (14.6% and 85.4% of trials, 
respectively). One might imagine that the match between 
participant and stimulus origin could be important. Prior 
work has suggested that familiarity may impact drivers’ 
ability to detect changes in their environment, ranging 
from hazards (Thompson & Sabik, 2018) to changes 
in road signs (Martens, 2018; Martens & Fox, 2007a, 
2007b), although these effects may require deep famil-
iarty with specific road segments, rather than the larger 
context (Beanland & Wynne, 2019; Wynne et al., 2019). 
Thompson and Sabik’s results, demonstrating impaired 
performance when drivers view road scenes with an 
unfamiliar traffic direction (left vs. right), suggest that 
our effects could be seen inconsistently across different 
demographics, or that they could be restricted to a subset 
of participants or videos.

 To test for this, we separately analyzed participants’ 
responses at 4% and 50% prevalence (across Experiments 
1 and 4), based on country of residence and traffic direc-
tion in the video (left or right-handed traffic). These results 
are shown in Figs. S2 and S3 in the Supplemental Infor-
mation. Briefly, we observed a consistent low-prevalence 
effect (higher miss rates under the low-prevalence condition 
compared with the high-prevalence condition) in both North 
American and UK participants (UK: 37.6% vs. 17.4%), t(29) 
= 6.93, p < .001; North America: 35.0% vs. 20.3%), t(29) 
= 3.48, p = .002, with no difference in the size of this effect 
across participant groups (i.e., no Country × Prevalence × 
Error Type interaction), F(1, 29) = .12, p = .73. Further-
more, we observed higher miss rates in the low prevalence 
condition compared with the high prevalence condition 
when we restricted our analysis to cases where the partici-
pant location of residence matched the the traffic direction in 
the video (i.e., North American participants and videos with 
right-handed traffic; miss rates of 34.3% vs. 20.9%), t(29) 
= 2.91, p = .007. Therefore, the effect we observe seems 
broadly consistent across participant demographics and is 
not restricted to a single subset of our sample. Comparing 
these error rates across different populations in a larger sam-
ple of participants or in a more naturalistic setting would be 
an important area for future follow-up work.

Experiments 2 and 3: Feedback manipulations

In Experiments 2 and 3, we tested the effect of feedback on the 
observed criterion shift. Previous work has shown that the LPE 
may be modulated by trial-wise feedback, such that observers 
adopt a more conservative criterion with feedback, and a more 
liberal criterion without feedback (Lyu et al., 2021). In Experi-
ment 2, a new set of 16 participants performed the same task as 

in Experiment 1 but received no feedback on their responses. 
Here, we no longer observed a significant prevalence effect 
on error rate (Prevalence × Error Type interaction), F(1, 14) 
= 0.92, p = .35, ηp

2 = .06, with a comparable proportion of 
missed hazards under low versus high prevalence (26.6% vs. 
23.6%, respectively), t(14) = 0.85, p = 0.41 (Fig. 2a). Simi-
larly, there was no significant difference in d′ (low: 2.21 vs. 
high: 2.20), t(14) = 0.30, p = .77, or criterion (low: 0.46 vs. 
high: 0.33), t(14) = 0.98, p = .34, between the low- and high-
prevalence conditions (Fig. 2c–d).

In Experiment 3, we provided feedback only when 
participants failed to report a hazard. Here, the LPE was 
somewhat reduced, with a significant Prevalence × Error 
Type interaction, F(1,14) = 10.15, p = .007, ηp

2 = .42, and 
a smaller difference in proportion of missed hazards (low 
prevalence: 25.6% misses vs high: 16.1%), t(14) = 2.24, p = 
.042 (Fig. 2a). At low prevalence, we also observed a more 
conservative criterion (low: 0.52 vs. high: 0.12), t(14) = 
3.88, p = .002, along with a small but significant increase in 
d′ (low: 2.49 vs. high: 2.22), t(14) = 2.22, p = .044.

Experiment 4: Response correction

Experiment 4 addresses the question of whether elevated 
miss rates at low prevalence can be attributed to motor errors 
(Fleck & Mitroff, 2007). In other words, are participants 
are simply pushing the “no hazard” button out of habit? To 
determine whether this was the case, we gave participants 
the opportunity to correct their errors on each trial. We con-
tinued to see a significant increase in the miss proportion 
at low prevalence. We observed a significant Prevalence × 
Error Type interaction, F(1, 14) = 41.86, p < .001, ηp

2 = 
.75, with an elevated miss rate at low prevalence (low: 34.1% 
missed hazards vs. high: 18.0%), t(14) = 6.52, p < .001 
(Fig. 2a). Error rates were consistent with a more conserva-
tive criterion (low: 0.90 vs. 0.24), t(14) = 8.85, p < .001, 
at low prevalence. This was accompanied by a smaller, but 
significant increase in d′ in the low prevalence condition 
(2.62 vs. 2.35), t(14) = 2.18, p = .047.

Experiment 5: Lower prevalence and participant 
prebriefing

While Experiments 1–4 suggest that infrequent hazards are 
missed, there are still remaining questions with regard to 
the real-world relevance of these findings. First, one might 
ask whether miss rates would continue to increase if we 
reduced hazard prevalence further. This would be expected 
from prior research with static stimuli (Mitroff & Biggs, 
2014) and more closely approximate the real prevalence of 
near-collision situations on the road. The 50% prevalence 
rate, used as a point of comparison in Experiment 1, may 
be simply too large and not at all representative of hazard 
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prevalence in any road environment since, outside of a war 
zone or a Jurassic Park film, hazards are simply not that 
frequent. Investigating differences between different low 
prevalence rates (e.g., between 10% and 1%) may be more 
informative. Second, can the LPE be reduced or eliminated 
by informing participants of this effect, and emphasizing the 
importance of finding the rare hazards?

 In Experiment 5 (n = 32), we reduced prevalence to 1% 
and 10%, and assigned participants to one of two groups 
(n = 16 each). One group was informed of the prevalence 
effect and instructed to avoid it, and the other was not. 
As before, we observed a significant Prevalence × Error 
Type interaction, F(1, 28) = 28.63, p < .001, ηp

2 = .51, 
with a significantly larger proportion of missed hazards at 
1% prevalence compared with 10% prevalence (56.9% vs. 
36.6%), t(28) = 4.99, p < .001. However, neither the main 
effect, F(1, 28) = 1.32, p = .26, nor any of the interactions 
involving prebriefing condition, F(1, 28) < 1.30, p > .26, 
were significant, indicating that informing observers about 
the prevalence effect did not significantly affect it. As in 
the other experiments, one limitation of this design is that 
a single miss can have a very large effect on error rates, 
particularly in the lower prevalence condition, where there 
are only five hazard-present trials. To equate the number 
of hazard-present trials between conditions, for the 10% 
prevalence condition, we analyzed only the first 50 trials that 
participants saw (these contain five hazards on average). As 
in our other experiments, we see a similar pattern of results, 
with miss rates of 56.9% at low prevalence and 30.2% at high 
prevalence (Fig. S1).

Finally, we compared sensitivity and criterion across the 
low-prevalence conditions in our experiments. Figure 3 plots 
d′ and criterion across rates of 4% and 50% from Experiment 
1, and rates of 1% and 10% from Experiment 5. Consistent 
with the results from individual experiments, we observed 
a significantly more conservative criterion at 1% compared 
with 4% prevalence, t(46) = 2.78, p = .008, with no differ-
ence in d′, t(46) = 1.16, p = .25.

Discussion

Previous work has demonstrated a low-prevalence effect 
(LPE) in target detection and visual search tasks, in which 
observers frequently miss targets as they become increas-
ingly rare (e.g., Broadbent & Gregory, 1965; Colquhoun, 
1961; J. M. Wolfe et al., 2005). Here we reproduced this 
phenomenon in a novel hazard detection paradigm, in which 
observers monitored brief clips of road videos for hazards, 
extending the LPE literature to dynamic natural scenes. Miss 
errors were elevated at low prevalence despite the heteroge-
neity, complexity, and dynamic nature of these events and 
despite the importance of accurate response to such hazards 

in the real world. In follow-up experiments, we demon-
strated that this effect is dependent on receiving immedi-
ate feedback (Experiments 2 & 3), cannot be attributed to 
motor errors (Experiment 4), and scales with decreasing 
prevalence, while being resistant to participant prebriefing 
(Experiment 5). The low-prevalence effect was also highly 
consistent across our sample; as shown in Figure S4, in the 
experiments with full feedback (Exp 1, 4, and 5), 54 of 64 
observers showed miss rates consistent with the LPE (higher 
proportion of misses under low prevalence).

Consistent with previous work, across our experiments, 
we observed a more conservative criterion (i.e., fewer “haz-
ard present” responses) as hazard prevalence was reduced. 
Importantly, this criterion shift was seen consistently as 
prevalence was reduced from 50% down to 4% and 1% 
(Fig. 3), matching results reported previously in visual 
search, which show that increasingly rare targets (i.e., less 
than 5%) are even more likely to be missed (Mitroff & Biggs, 
2014). In contrast, sensitivity (d′) remained relatively stable 
across the prevalence rates tested. This result also aligns 
with work in vigilance (Thomson et al., 2016) that identi-
fies a shift in criterion rather than sensitivity as a source of 
vigilance performance decrements. However, we note that, 
in two of our experiments (Experiment 3: partial feedback; 
Experiment 4: response correction) we additionally saw a 
small, but significant increase (rather than a decrease) in d′ 
at low prevalence. This result has been observed previously 

Fig. 3  Plot of criterion (left y-axis, black) and d′ (right y-axis, blue) 
across different prevalence rates. Results from several experiments 
show that d′ remains stable across prevalence, indicating no loss of 
sensitivity when hazards are rare. In contrast, criterion changes dra-
matically as hazards become less common. Higher criterion values 
reflect a greater tendency to respond “no hazard” and thus to miss 
more hazards. (Color figure online)
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for the LPE in visual search (J. M. Wolfe et al., 2007) where 
it may reflect unequal variance in the underlying signal and 
noise distributions, which renders interpretation of d' more 
difficult. Nevertheless, as shown in Fig. 3, any LPE change 
in d′ is small compared with the change in criterion. In other 
words, consistent with other tasks, as hazard prevalence 
decreases, criterion becomes more conservative and miss 
errors become more frequent.

In addition, we reproduce recent work demonstrating 
that the LPE may depend on trial-wise feedback. Lyu et al. 
(2021) showed that, in categorizing ambiguous stimuli (e.g., 
colored patches, shapes), observers adopt a more conserva-
tive criterion at low prevalence when provided with feed-
back, while adopting a more liberal criterion without feed-
back. Although we did not see a more liberal criterion at 
low prevalence (4%) compared with high prevalence (50%) 
without feedback (Experiment 2), this manipulation was 
sufficient to eliminate the LPE. As expected, we observed 
the largest criterion shift when observers received feedback 
regarding response accuracy after each trial. Translating 
these findings from experimental contexts to the real world 
has a number of limitations, but it is likely that much of the 
feedback that drivers receive is self-generated (e.g., “I did 
not need to brake”) or dramatic (e.g., a literal “hit”). Many 
real-world errors will be false alarms (no need to brake). 
Self-generated feedback about all those false alarms may 
make observers less likely to respond to actual hazards.

Driving can be considered a vigilance task. However, our 
results differ from some findings in the vigilance literature. 
Target heterogeneity can attenuate the vigilance decrement 
(Thiffault & Bergeron, 2003; Thomson et al., 2015), but we 
still see a robust effect of hazard prevalence using a hetero-
geneous set of real road hazards (e.g., pedestrians, animals, 
unconstrained objects, other vehicles). This suggests that 
target complexity and variability are insufficient to prevent 
the LPE. Moreover, unlike some vigilance tasks, where 
increased effort, or simply telling participants to try harder 
(N. H. Mackworth, 1950) may attenuate the effect, our LPE 
is not easily cognitively penetrable. When informed of the 
prevalence effect and instructed to avoid it, participants nev-
ertheless missed a higher proportion of hazards in the lower 
prevalence condition in Experiment 5.

While we have established a clear low-prevalence effect 
when observers view the dynamic road scenes from our stim-
ulus set, there are many differences from real-world driving 
that limit the generalizability of these findings. In particular, 
viewing videos of dynamic road scenes is inherently a much 
more passive task compared with operating a vehicle, which 
requires constant monitoring, maneuvering, and correction. 
There is a lot less at stake when the participant is not actually 
behind the wheel. Future work would also be necessary to 
determine whether the effects we observe persist with longer 
video durations in more continuous settings (i.e., as opposed 

to a series of brief clips), as well as how these effects may 
vary with the driver’s experience, skill, and familiarity with 
the road environment. Additionally, it would be useful to 
have a larger sample of participants to examine cultural and 
other demographic variables. This is particularly important, 
given that the frequency of different types of hazards (e.g., 
pedestrians vs. vehicles) varies considerably across different 
driving environments.

Another important difference from real-world driving are 
the costs and payoffs. Could the high costs for missed haz-
ards be sufficient to eliminate this low-prevalence effect in 
the real world? In principle, decision theory would predict 
that changing the payoffs could minimize or reduce this cri-
terion shift. However, previous work has indicated that pay-
offs may be less effective than changes in target prevalence 
in shifting observers’ criterion (Healy & Kubovy, 1981; 
Maddox, 2002). Moreover, the high real-world costs for 
missed targets appear to be insufficient to eliminate the LPE 
in some visual search tasks, where experts miss important 
targets like abnormalities in medical images (Evans et al., 
2013). Determining whether this is also the case for on-road 
hazard detection would require further work, and a closer 
focus on driver expertise and environment (e.g., developing 
a stimulus set for one environment and recruiting observers 
from that same environment).

Indications of an LPE are present elsewhere in driving 
research. For example, others have reported a “safety in num-
bers” effect, in which higher prevalence of pedestrians and 
cyclists actually reduces the likelihood that they will col-
lide with a motor vehicle (Beanland et al., 2015; Jacobsen, 
2015). Similarly, the driving literature points to the dangers 
of monotonous driving (Thiffault & Bergeron, 2003), where 
drivers must respond infrequently. These effects could be 
exacerbated by drivers’ assumptions about particular set-
tings. A busy street may keep a driver on their toes, but the 
same driver may fail to respond in time to an animal that 
unexpectedly jumps into a lonely desert road. Finally, and 
somewhat perversely, prevalence effects may become more 
of a problem as vehicle automation makes vehicles and roads 
safer. Others have drawn attention to driver “deskilling” as 
an unintended consequence of automation’s ability to remove 
many dangerous situations from the road (Noy et al., 2018). A 
semiautonomous vehicle, where the driver may be expected 
to act only when a hazard arises, may create exactly the type 
of low-prevalence situation in which humans perform badly, 
although whether takeover situations will exist, or if drivers 
will notice such situations on their own is an open question 
(de Winter et al., 2021). Determining how to improve drivers’ 
ability to respond to the few hazardous situations that remain 
will be an important question for future work.
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