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Abstract
In visual search, observers often miss rare targets. This low prevalence effect (LPE) is resistant to many cognitive interven-
tions. However, a recent study showed that having participants identify the item that was most similar to the target (similarity 
search) eliminated the LPE. As real-world searches often require binary decisions (e.g., is there a threat in this bag?) we 
tested whether the benefits of similarity search generalize to binary decisions and to more naturalistic stimuli. Participants 
searched for T shapes amongst near-T distractors and the prevalence of true Ts was manipulated. In the similarity-search-only 
condition, participants clicked on the “most T-like object.” In the similarity search & binary decision condition, participants 
additionally reported whether the chosen item was a true T (yes/no). We found that in some circumstances, similarity search 
can be used to attenuate the LPE. However, there was an LPE for the binary decision task. Participants were less likely to 
classify the target as a true T during low prevalence compared with high. We replicated this result in an additional experi-
ment using more naturalistic stimuli. Participants watched clips of road videos and clicked on the “most hazardous loca-
tion” in the video, followed by a binary decision (“would you need to respond to that hazard? yes/no”). Though participants 
located the hazards regardless of prevalence, there was an LPE for the binary decision task. Together, these results indicate 
potential limitations in applying similarity search outside the laboratory; the LPE is still seen in these searches if a binary 
decision is involved.
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Many real-world visual searches rely on our ability to detect 
rare but important items (e.g., road hazards, threats in lug-
gage). Despite the importance of the targets, observers often 
miss them when their prevalence is low. For example, newly 
trained TSA (Transportation Security Administration) offic-
ers are worse at finding target items (e.g., weapons) in simu-
lated X-ray screenings of luggage when those targets are 
rare (Wolfe et al., 2013). Importantly, this phenomenon—
the low prevalence effect (LPE)—has been demonstrated in 
many naturalistic visual search contexts, including radio-
logical image search (Evans et al., 2013), simulated baggage 
screening (Wolfe et al., 2013), and the detection of deepfake 
videos on the internet (Josephs et al., 2024). The LPE can 

also potentially impact drivers’ ability to find certain types 
of vehicles (Beanland et al., 2014) and ability to detect and 
respond to road hazards (Kosovicheva et al., 2023). Similar 
results have been shown in the classic vigilance literature, 
in which observers respond to infrequent targets that appear 
over an extended period of time (Mackworth, 1948). Perfor-
mance decreases as the prevalence of the targets decreases 
(Baddeley & Colquhoun, 1969; Broadbent & Gregory, 1965; 
Colquhoun, 1961).

From a signal detection framework, the LPE reflects a 
shift towards a more conservative response criterion (bias 
away from making a “target-present” response). Target 
prevalence rarely impacts sensitivity (d′), suggesting that 
observers do not just become completely careless during 
periods of low prevalence (Thomson et al., 2016; Wolfe 
et al., 2007). Prevalence also impacts the amount of time 
participants spend searching an array. Participants terminate 
search earlier during periods of low prevalence compared 
with high (Wolfe & Van Wert, 2010).
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Because of the LPE’s impact on real-world searches, 
previous studies have made many attempts to reduce or 
eliminate the LPE, with mixed success. Some interventions 
have relied on multiple observers in an effort to catch infre-
quent targets. For example, Wolfe et al. (2007) tested several 
interventions using a simulated baggage screening task with 
either high- or low-prevalence targets (weapons amongst 
other objects). One variant of the task tested whether having 
multiple participants view the same images would reduce the 
LPE. Despite having two sets of eyes on the suitcases, there 
was still an LPE, though performance was slightly better 
relative to individual performance. However, more recent 
work measuring the impact of multiple searchers on the LPE 
has shown that searching in pairs can substantially reduce 
miss rates in a radiological image search task, particularly 
when motor errors are accounted for (Kunar et al., 2021).

Other interventions have aimed to reduce the LPE by 
modifying individual participants’ decision boundaries by 
changing either the expectation of target prevalence, or the 
payoffs associated with each response. For example, in the 
final experiment of Wolfe et al. (2007), participants com-
pleted blocks of low-prevalence searches with no feedback, 
interspersed with high-prevalence “bursts” (i.e., a short 
block of trials with high target prevalence) with feedback 
throughout the experiment. This eliminated the LPE, and 
participants maintained a more liberal criterion during low 
prevalence. This suggests that observers use feedback to esti-
mate target prevalence.

In line with this finding, several other studies have shown 
that feedback manipulations can reduce, eliminate, or even 
reverse the LPE in some contexts. For example, removing 
response feedback has been shown to reduce the low-preva-
lence effect in simulated baggage screening tasks (Van Wert 
et al., 2009) as well as a computer-based road-hazard detec-
tion task (Kosovicheva et al., 2023). Removing feedback can 
also shift participants’ responses to become overly liberal 
when making perceptual decisions about ambiguous stimuli 
(Lyu et al., 2021). A key factor may be participants’ expecta-
tions of target prevalence (Cox et al., 2021). For example, 
another study by Schwark et al. (2012) found that giving 
incorrect feedback to increase participants’ expectations of 
target prevalence could alter the LPE. If observers attempt to 
equate the number of misses and false alarms during search, 
then informing participants they are making more misses 
than they actually are would lead to participants adopting at 
more liberal criterion. Indeed, false feedback about miss rate 
improved target detection during low prevalence.

Despite the effectiveness of removing feedback on reduc-
ing or eliminating the LPE, removing or modifying feedback 
in real life is often not possible as feedback can be self-gen-
erated. Consider that when driving, each moment you do not 
have to brake or swerve to avoid a road hazard is “feedback” 
that a hazard was not present. Most real-world errors on 

the road will be false alarms (e.g., braking too early) rather 
than misses (e.g., getting in a fender bender). Self-generated 
feedback (e.g., “Oh, I didn’t need to brake that early”) about 
those errors may make drivers less likely to respond to actual 
hazards (which are rare). Therefore, removing feedback is 
not always a viable option to eliminate the LPE in real-world 
scenarios. An alternative to modifying feedback may be to 
modify the payoffs and penalties associated with each type 
of response (Hadjipanayi et al., 2023). However, similarly, 
this is not always possible in real-life situations, and the 
LPE has been shown to still persist in some high-stakes real-
world scenarios (Evans et al., 2013).

Finally, in addition to the interventions described above, 
previous work has examined whether changing some ele-
ment of the task or the response required of participants 
would reduce the LPE. For example, one intervention 
reduced the LPE by eliminating sources of motor error; 
participants showed a reduced miss rate when they were 
given an opportunity to correct their initial “target-present” 
or “target-absent” response in a low-prevalence search task 
(Fleck & Mitroff, 2007). However, further work with this 
approach has suggested that this may be less effective for 
complex searches and may depend on the nature of the 
feedback provided (Van Wert et al., 2009). Moreover, sev-
eral studies have shown a persistent LPE with correctable 
searches (Kunar et al., 2021; Rich et al., 2008).

In another task-based intervention, a recent study showed 
that the LPE could be eliminated by using a simple cognitive 
strategy (Taylor et al., 2022). Rather than have observers 
search for a specific target, participants were instructed to 
engage in “similarity search”—finding the most target-like 
object on every trial, regardless of whether or not a target 
was actually present. Taylor et al. (2022) had participants 
search for T shapes (in which the vertical line segment per-
fectly bisected the horizontal one) among T-like distractors 
(which varied in the size of the offset between the two line 
segments), and the prevalence of the true Ts was manipu-
lated (high = 50%, low = 10%). In one condition, partici-
pants reported whether or not a T was present (“present/
absent search”). In the other condition, participants were 
asked to locate the most T-like object in the array on every 
trial (“similarity search”). Participants were given feedback 
on each trial. In the present/absent search condition, there 
was an LPE for target detection. However, in the similarity 
search condition, participants were just as good at locat-
ing the true Ts during periods of high prevalence as low, 
effectively eliminating the LPE. The authors speculate that 
because similarity search requires a target-present response 
on each trial, participants maintained their expectations for 
a target on each trial.

In this study, we expand upon the similarity search 
method to test its feasibility as an intervention in more natu-
ralistic domains. Though similarity search is easy to carry 
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out, it is not wholly practical. Imagine standing in the TSA 
line where the officer has to find the most weapon-like item 
in every bag. Instead of pulling out hairbrushes and curling 
irons from every piece of luggage, the officer would instead 
need to ask themselves “is this item I selected from the X-ray 
an actual weapon?” Following similarity search, observers 
would ultimately need to make a binary decision about the 
selected target (e.g., is this item in the luggage actually a 
weapon? Do I need to hit the brakes?).

In three experiments, we tested whether similarity search 
extends to these sorts of binary decisions. In other words, 
can participants correctly report whether or not they selected 
the “true” target? One possibility is that similarity search 
shifts observers’ response criterion in a way that general-
izes across multiple decision types; in other words, they 
would find the item that most closely resembles a target 
and correctly classify the true targets when they are pre-
sent. Alternatively, observers may set a separate criterion 
for these binary decisions and fail to correctly classify the 
target, even if they find it in the similarity search task. In the 
first two experiments, we tested this by having participants 
report whether a target was present after each similarity 
search trial. In a third experiment, we test whether similarity 
search is effective with more naturalistic stimuli by having 
participants identify the most hazardous object in videos of 
real road scenes.

Experiment 1

In Experiment 1, participants performed a search task in 
which they looked for Ts amongst T-like distractors. We 
compared observers’ error rates in two different conditions: 
a “similarity-search-only” condition and a “similarity search 
& binary decision” condition. For the “similarity-search-
only” condition, participants searched for most T-like object 
out of a display of shapes varying from perfect Ts to Ls. 
The prevalence of true Ts varied between two prevalence 
conditions (low, 10% target prevalence; high, 50% target 
prevalence). Participants made their decisions by clicking 
on the shape they thought was the target. After each click, 
participants were provided feedback by showing where the 
correct target was for that trial. For the “similarity search 
& binary decision” condition, participants searched for the 
most T-like object, but after clicking it, they then reported 
whether or not the selected object was a true T. Participants 
were given feedback based on the accuracy of their binary 
decision.

If the benefits of similarity search transfer to binary 
decisions, we would expect to see that participants would 
successfully classify their selected targets, regardless of 
the prevalence of the true Ts. Conversely, if similarity 
search does not transfer to binary decisions, there may be a 

secondary LPE for the binary decision task (i.e., participants 
will be worse at classifying the true Ts as true Ts during 
periods of low prevalence).

Methods

Participants

Participants were recruited using Prolific (https:// www. proli 
fic. com). Prolific is an on-demand self-service data-collec-
tion platform. Each participant provided electronic consent 
to the protocol approved by the Research Ethics Board of 
the University of Toronto prior to participation and received 
monetary compensation for their participation (5 GBP for 
Session 1 and 5 GBP for Session 2 plus an 8 GPB “comple-
tion bonus”). All participants self-reported were fluent in 
English, had normal or corrected-to-normal vision, and were 
from the USA, Canada, or the United Kingdom.

A total of 34 participants were recruited, and none were 
excluded (see “Participant Exclusion Criteria” below for 
details). Power calculations, based on an effect size from a 
pilot study with 20 participants (Cohen’s d = 0.5), indicated 
that a minimum of 34 participants were necessary to detect 
a significant difference in miss rate during low prevalence 
based on task type (similarity search & binary decision, 
similarity search only) at 80% power. Power calculations 
were conducted using G*Power 3 (Faul et al., 2007).

The mean age of the sample was 29.4 years (range: 
22–36) with 19 men and 15 women.

Participant exclusion criteria The preregistered exclusion 
criteria were based on accuracy during the high-prevalence 
condition for the similarity-search-only task. The preregis-
tration can be found at (https:// osf. io/ rszkg). If a participant 
had an accuracy of less than 30% in the high-prevalence 
condition for the similarity-search-only task, their data were 
to be excluded. No one was excluded based on these criteria.

Apparatus

All data were collected online. Participants were directed 
from Prolific to Qualtrics (https:// www. qualt rics. com), 
where they read and digitally signed a consent form. After 
signing, they were redirected to Pavlovia (Peirce et al., 
2019). The experiment was coded using Psychopy3 (Pei-
rce et al., 2019). Participants were only permitted to do the 
experiment on a desktop or laptop computer.

Stimuli

The stimuli included a set of “true-T” and “near-T” shapes 
(see Fig. 1). A true T is a shape where the stem perfectly 
bisects the branch of the T at the midpoint. For near Ts, the 

https://www.prolific.com
https://www.prolific.com
https://osf.io/rszkg
https://www.qualtrics.com
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stem is offset from the center of the branch. Each shape was 
generated from horizontal and vertical line segments that 
filled a square region that was resized for each participant 
to fill 5% of the screen’s height. Shapes had a stroke width-
to-shape-height ratio of 1:5.5. The smallest offset from the 
middle of the branch for the “near Ts” was 4.5% of the shape 
height, and the largest offset from the middle of the branch 
was 41% of the shape height (a perfect L shape). Shape 
image files were pregenerated in MATLAB according to 
two parameters: offset (0% for true Ts, 4.5% through 41% 
of shape height [in increments of 2.27%] for near Ts), and 
shade of grey (RGB value 100 through 160). Each shape 
was produced in each shade of grey (i.e., 61 grey levels per 
shape).

The 16 T shapes (one target, 15 distractors) were pre-
sented in random locations in an 8 × 8 square grid (the grid 
was 70% × 70% of the screen’s height, each position was 
10% of the screen’s height apart) on a dark-grey background 
(RGB value of 40), with a horizontal and vertical positional 
jitter (maximum of 2.5% of the screen’s height) and a ran-
dom rotation angle (chosen from 0, 90, 180, or 270 degrees) 
applied to each shape.

Procedure

This similarity search task was adapted from Experiment 3 
in Taylor et al. (2022). On each trial, participants were asked 
to search for the most T-like shape amongst 15 T-like dis-
tractors (see Fig. 2). Participants indicated their response by 
clicking on the shape. Participants were given a maximum 
of one minute to search the array (there were no participants 
who reached this time limit). The prevalence of the true Ts 
was manipulated. During high prevalence, a true T was pre-
sent 50% of the trials. During low prevalence, it was 10%. 
On target-present trials, the display consisted of one true-T 
target and 15 near-T distractors. On trials where a true T was 
not present, the display consisted of entirely near-T shapes, 

and the “target” for that trial was the shape that was closest 
to a true T (i.e., had the smallest offset among the shapes on 
the screen). Displays were generated by first drawing fifteen 
near-T distractors at random. Then, a range of possible offset 
values for the target near T was calculated (e.g., if the small-
est offset in the distractor list was 18%, the near-T target for 
that trial could have an offset between 4.5% and 13.5%). 
The near-T target offset was then randomly selected from 
this range of possible offsets, resulting in exactly one unique 
target per trial.

There were 50 trials in the high-prevalence condition, and 
250 trials in the low-prevalence condition. Order of preva-
lence was counterbalanced between participants. Prior to 
the start of each trial block, participants performed 20 prac-
tice trials (40 practice trials in total), and participants were 
informed about the prevalence of the true Ts. Participants 
were given an optional 1-min break every 50 trials.

Similarity search only In the similarity-search-only task, 
after a participant selected a shape, they were given feedback 
based on the accuracy of their target selection. If they were 
incorrect, a red box was shown around the correct shape. If 
they were correct, a green box was shown around the cor-
rectly identified target shape. The feedback was on-screen 
for 2 s. Participants were only provided with feedback about 
the accuracy of their choice, but they were not told whether-
or-not the selected target was a true-T.

Similarity search and binary decision In the similarity search 
& binary decision task, after a participant selected a shape, 
they were then asked, “Was that image a true T? Yes or no.” 
Participants indicated their responses with their keyboards 
(“up” for yes and “down” for no). They were then given 
feedback (correct/incorrect) based on the accuracy of their 
classification. The feedback was on screen for two seconds. 
It is important to note that participants were given feed-
back based on the binary decision, not the search task. For 
example, if a participant selected one of the distractors on 
a true-T-present trial, but they said their selected target was 
a non-T, they would be told they were “correct.” Therefore, 
they were not given information about the accuracy of the 
initial target selection during the search task.

The two tasks (similarity search only and similarity 
search & binary decision) were completed across two ses-
sions on different days, with task order counterbalanced 
across participants.

Analysis

Similarity search We compared accuracy on the similarity 
search task (correctly identifying the location of the true T 
when it was present) across the two prevalence conditions 

Fig. 1  Sample stimuli for Experiments 1 and 2. The targets were 
either true Ts or near Ts. For true Ts, the stem bisected the branch 
at the midpoint. The near Ts varied in how much the stem was offset 
from the branch
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(low, high) and task (similarity search only and similarity 
search & binary decision) using a 2 × 2 repeated-measures 
analysis of variance (ANOVA). Critically, we examined the 
interaction between task and prevalence. We also performed 
two paired-sample t tests to examine the difference in accu-
racy between high and low prevalence for both task types.

We also examined the accuracy of the true-T-absent trials 
to examine whether participants were successfully locating 
the near-T targets using a 2 (prevalence: low, high) × 2 (task: 
similarity search only and similarity search & binary deci-
sion) repeated-measures ANOVA.

We also examined average response times across the 
high- and low-prevalence conditions on the true-T-present 
trials (correct responses only) for both tasks using two 
paired-sample t tests.

Binary decision For each participant and prevalence con-
dition, we calculated the miss rates out of the set of trials 
in which the participant correctly clicked on the true T on 
the search task. The miss rate was the proportion of true-
T-present trials in which the participant successfully located 

the true T on the search task and then did not classify it as 
a true T. (In this case, a “hit” is classified as a trial in which 
the participant successfully located the true T on the search 
task and correctly classified it as a true T, so hit rate is equal 
to 1 minus the miss rate as in signal detection theory.)

We also calculated the false-alarm rate out of the set of 
trials in which the participant clicked on a non-T shape in the 
search task. The false-alarm rate was the proportion of these 
trials in which the participant classified the non-T shape they 
had clicked as a true T. As these responses are coded based 
on the item the participant clicked rather than the full set of 
items in shown on a given trial, a false alarm could therefore 
occur on a true-T-present or a true-T-absent trial.

We then examined differences in misses and false alarms 
across the prevalence conditions using two paired-sample 
t-tests.

In addition, we performed a signal detection analysis to 
examine changes in sensitivity (d′) and criterion (measured 
as bias; b) on the binary decision task using a two paired-
sample t tests. Bias and d’ were both calculated using the 
Psycho library in R (Makowski, 2018).

Fig. 2  Trial Sequence for Experiments 1 and 2. A) The similarity-
search-only task. Participants were told to click on the most T-like 
shape and were then given feedback based on their accuracy. B) The 
similarity search & binary decision task. Participants were told to 
click on the most T-like shape and were then asked whether or not it 

was a true T. Participants were then given feedback on the accuracy 
of their classification. In Experiment 1, the prevalence for the true Ts 
was 10% (low) and 50% (high). In Experiment 2 it was 4% (low) and 
50% (high)
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Results

Similarity search

Figure 3 shows mean accuracy (percentage of correct clicks 
on true-T-present trials) for each condition in the similar-
ity search task. The 2 (task: similarity search only, similar-
ity search & binary decision) × 2 (prevalence: low, high) 
repeated-measures ANOVA revealed no main effect of task 
on accuracy, F(1, 33) = 2.67, p = .11, ηp

2 = .08. There was 
a significant main effect of prevalence F(1, 33) = 30.34, p < 
.001, ηp

2 = .48. Specifically, participants were significantly 
less accurate at locating the true Ts during periods of low 
prevalence than high. There was no interaction between task 
and prevalence, F(1, 33) = 1.21, p = .28, ηp

2 = .04.
We also confirmed that the LPE was present in each of the 

two task types using two paired-sample t tests (corrected for 
multiple comparisons, α = .025). Participants were signifi-
cantly worse at finding the true Ts in the similarity-search-
only task, t(33) = 4.74, p < .001, Cohen’s d = .81, and in 
the similarity search & binary decision task, t(33) = 4.05, p 
< .001, Cohen’s d = .70.

For the true-T-absent trials, there was a main effect of 
task, F(1, 33) = 11.61 , p = .002, ηp

2 = .26. Specifically, 
participants were significantly better at finding the near-T 
targets on the similarity-search-only task compared with the 
similarity search & binary decision task. There was also a 
main effect of prevalence (prevalence relating to the preva-
lence of the true Ts), F(1, 33) = 12.67, p = .001, ηp

2 = .28. 
Participants were significantly better at finding the near-T 
targets during high true-T prevalence compared with low. 
The interaction was not significant, F(1, 33) = 1.91, p = 
.18, ηp

2 = .06.

Reaction time For the similarity-search-only task, there was 
no significant difference in average response times between 
high and low prevalence (4.12s vs. 3.90s), t(33) = .99, p = 
.33, Cohen’s d = .17.

For the similarity search & binary decision task, there 
was no significant difference in response times between high 
and low prevalence (4.49 s vs. 4.33 s), t(33) = .69, p = .49, 
Cohen’s d = .12.

Binary decision Figure 4 shows the miss rate, false-alarm 
rate, d′, and criterion for the binary decision task. Miss rate 
was significantly greater in the low-prevalence condition 
compared with high, t(33) = 3.22, p = .003, Cohen’s d = 
.55. There were also significantly fewer false alarms in the 
low-prevalence condition compared with high, t(33) = 6.74, 
p < .001, Cohen’s d = 1.16.

There was no significant difference in d′ between the 
low- and high-prevalence conditions, t(33) = .97, p = .34, 
Cohen’s d = .17. However, consistent with the pattern of 
miss rates and false alarms, participants were significantly 
more conservative (had a more strict criterion) in their will-
ingness to say a selected target was a T in low prevalence 
than in high, t(33) = 6.28, p < .001, Cohen’s d = .21.

Discussion

There appears to be a double low-prevalence effect. Dur-
ing periods of low prevalence, participants were less likely 
to locate the true T on the search task compared with high 
prevalence.

In addition, even when they did locate the true T on 
the search task during low prevalence, they then failed to 

Fig. 3  Similarity search accuracy for Experiment 1. Participants were significantly worse in locating the true Ts during low prevalence compared 
with high for both task types. Error bars are Morey’s standard error of the mean (SEM; Morey, 2008)
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classify it as a true T on the binary decision task, with nearly 
twice the proportion of misses in the low-prevalence condi-
tion compared with the high-prevalence condition (21% vs. 
11%). In sum, similarity search did not provide any benefit 
on the binary classification task.

Experiment 2

In Experiment 1, we observed an LPE in the similarity 
search task in both conditions (similarity search only and 
in the similarity search & binary decision conditions), with 
no interaction between prevalence and condition. Further-
more, we observed an LPE for binary decisions. Although 
we observed a significant LPE when observers engaged in a 
similarity search task, which was a manipulation intended to 
eliminate the LPE, we note that the LPE was not very large 
in this case (similarity search only: 63.75% target detection 

for high, 55.18% for low; similarity search & binary deci-
sion: 62.24% for high and 50.12% for low). These values 
are also comparable with the similarity search performance 
reported by Taylor et al. (2022).

One possible explanation for this result is that the benefits 
of similarity search may be more easily observed at lower 
prevalence rates. Therefore, we carried out an additional 
experiment and exaggerated the difference between high and 
low prevalence from 50% and 10% to 50% and 4%.

Methods

Participants

Participants were recruited and screened in the same manner 
as in Experiment 1.

A total of 43 participants were recruited, and three were 
excluded (see “Participant Exclusion Criteria”). Power 

Fig. 4  LPE for the binary decision task in Experiment 1. A Misses 
were significantly higher in the low prevalence condition compared 
with high. B False alarms were significantly lower in the low preva-
lence condition compared to high. C Sensitivity was not impacted by 

prevalence. D Criterion was significantly higher (more conservative) 
in the low-prevalence condition compared with high. Error bars are 
Morey’s SEM (Morey, 2008)
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calculations, based on an effect size from a pilot study with 
20 participants (Cohen’s d = 0.5), indicated that a minimum 
of 34 participants are necessary to detect a significant dif-
ference in miss rate during low prevalence based on task 
type (similarity search & binary decision, similarity search 
only) at 80% power. Power calculations were conducted 
using G*Power 3 (Faul et al., 2007).

The mean age of the final sample was 31.32 years (range: 
22–36), with 33 men and seven women.

Participant exclusion criteria We used the same exclusion 
criteria as in Experiment 1. Three participants were excluded 
based on these criteria. See (https:// osf. io/ kqbrm) for the 
preregistration.

Stimuli and procedure

The apparatus, procedure, stimuli, and analyses were identi-
cal to those used in Experiment 1, except for the following: 
In the low-prevalence condition, the prevalence of the true 
Ts was reduced to 4%. There were 300 trials in the low-
prevalence condition.

Results

Similarity search

The 2 (task: similarity search only, similarity search & 
binary decision) × 2 (prevalence: low, high) repeated-
measures ANOVA revealed no main effect of task on 
accuracy on true-T-present trials, F(1, 39) = .03, p = .86, 
ηp

2 = 8.03×10−4 (see Fig. 5). There was a significant main 

effect of prevalence F(1, 39) = 17.99, p < .001, ηp
2 = .32. 

Specifically, participants were significantly less accurate at 
locating the true Ts during periods of low prevalence than 
high. There was no interaction between task and preva-
lence, F(1, 39) = 3.76, p = .06, ηp

2 = .09.
We also examined whether the LPE was separately pre-

sent in each of the two task types using two paired-sample 
t tests (corrected for multiple comparisons, α = .025). 
There was no significant difference in locating the true Ts 
during low prevalence compared with high for the simi-
larity-search-only task, t(39) = 1.82, p = .077, Cohen’s d 
= .29. Conversely, participants were significantly worse 
at locating the true Ts during periods of low prevalence 
compared high for the similarity search & binary decision 
task, t(39) = 4.71, p < .001, Cohen’s d = .74. This com-
parison suggests that similarity search may serve to reduce 
or eliminate the LPE in certain contexts.

For the true-T-absent trials, there was a main effect of 
task, F(1, 39) = 4.94, p = .03, ηp

2 = .11. Specifically, 
participants were significantly better at finding the near-
T-targets on the similarity-search-only task compared with 
the similarity search & binary decision task. There was 
also a main effect of prevalence (prevalence relating to 
the prevalence of the true Ts), F(1, 39) = 9.64, p = .004, 
ηp

2 = .20. Participants were significantly better at finding 
the near-T targets during high true-T prevalence compared 
with low. The interaction was not significant, F(1, 39) = 
.004, p = .95, ηp

2 = 1.04×10−4.

Reaction time For the similarity-search-only task, there was 
no significant difference in response times between high and 

Fig. 5  Similarity search accuracy for Experiment 2. In the similarity-
search-only task, participants were equally good at locating the true 
Ts during high and low prevalence. In the similarity search & binary 

decision task, participants were significantly worse at locating the 
true Ts during low prevalence compared with high. Error bars are 
Morey’s SEM (Morey, 2008)

https://osf.io/kqbrm
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low prevalence (4.50s vs. 4.63 s), t(39) = .42, p = .678, 
Cohen’s d = .18.

For the similarity search & binary decision task, there 
was no significant difference in response times between high 
and low prevalence (4.79s vs. 4.93 s), t(39) = .31, p = .76, 
Cohen’s d = .19.

Binary decision

Figure  6 shows the miss rate, false-alarm rate, d′, and 
criterion for the binary decision task. Miss rate was 
significantly higher in the low-prevalence condition 
compared with high, t(39) = 4.96, p < .001, Cohen’s d = 
.78. There were also significantly fewer false alarms in the 
low-prevalence condition compared with high, t(39) = 6.83, 
p <.001, Cohen’s d = 1.08.

There was no significant difference in d′ between the 
low- and high-prevalence conditions, t(39) = .11, p = .91, 
Cohen’s d = .02. However, participants were significantly 
more conservative (had a more strict criterion) in their will-
ingness to say a selected target was a T in low prevalence 
than in high, t(39) = 5.17, p < .001, Cohen’s d = .82.

Discussion

Overall, we found a similar pattern of results to that of 
Experiment 1. When similarity search was combined with 
a binary decision task, we observed a significant low preva-
lence effect in participants’ responses when clicking most 
T-like target. In addition, when asked to classify whether 
the selected target was a true T, participants missed a larger 
proportion of targets under low prevalence compared with 
high prevalence (23% vs. 8%). When participants completed 

Fig. 6.  LPE for the binary decision task in Experiment 2. A Misses 
were significantly higher in the low prevalence condition compared 
with high. B False alarms were significantly lower in the low preva-
lence condition compared with high. C Sensitivity was not impacted 

by prevalence. D Criterion was significantly higher (more conserva-
tive) in the low prevalence condition compared with high. Error bars 
are Morey’s SEM (Morey, 2008)
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the similarity search task on its own, however, performance 
in identifying the True T was not significantly worse in the 
low-prevalence condition compared with the high-preva-
lence condition, which replicates previously reported results 
(Taylor et al., 2022).

Previous work has suggested that interventions to reduce 
the LPE may vary, depending on the complexity of the 
task and the nature of the stimuli (Van Wert et al., 2009). 
Although we still observed an LPE in both task conditions 
of Experiment 1, and in the similarity search & binary deci-
sion condition of Experiment 2, it is possible that the LPE 
may be entirely absent when similarity search is used with 
other types of stimuli. We tested this in Experiment 3 and 
additionally measured participants’ performance in making 
binary decisions following these similarity judgments.

Experiment 3

In Experiment 3, we examined whether any benefits of 
similarity search are seen with more naturalistic stimuli. 
Previous work has shown a low-prevalence effect for the 
detection of hazardous road events when participants viewed 
videos recorded from dashboard cameras (Kosovicheva 
et al., 2023). Specifically, we examined participants’ error 
rates on a road-hazard-detection task using the same video 
set, where participants were engaged in similarity search. 
When watching road-hazard videos, participants were asked 
to click on the most hazardous object in the video, regardless 
of whether a hazard was present. After clicking on the most 
hazardous object, participants were then asked if the hazard 
they selected would require a response on the road (e.g., 
turning the steering wheel, braking). Participants were given 
feedback based on the accuracy of their binary decision.

Methods

Participants

Participants were recruited using Prolific (https:// www. proli 
fic. com). Each participant provided electronic consent to 
the protocol approved by the Research Ethics Board of the 
University of Toronto prior to participation and received 
monetary compensation for their participation identical to 
Experiments 1 and 2. All participants self-reported they had 
driver’s licenses, were fluent in English, had normal or cor-
rected-to-normal vision, and were from the USA, Canada, 
or the United Kingdom.

A total of 16 participants were recruited, and none were 
excluded (see “Participant Exclusion Criteria” below for 
details). Power calculations, based on an effect size from a 
pilot study with 10 participants (Cohen’s d = 0.9), indicated 
that a minimum of 10 participants was necessary to detect a 

significant difference in miss rate based on prevalence (low, 
high) at 80% power. Power calculations were conducted 
using G*Power 3 (Faul et al., 2007). This final sample size 
of 16 is above the target sample but is the same size as pre-
vious research (Kosovicheva et al., 2023). The mean age of 
the sample was 29.94 years (range: 23–36) with 10 men and 
six women.

Participant exclusion criteria The preregistered exclusion 
criteria were based on participants’ performance on catch 
trials (see Procedure). Preregistration can be viewed online 
(https:// osf. io/ khry6). Participants needed to obtain at least 
85% accuracy on the catch trials for inclusion in the final 
sample. No participants were excluded from this experiment.

Apparatus

Apparatus was the same as in Experiments 1 and 2.

Stimuli

Stimuli were composed of road videos from the Road Hazard 
Stimulus Set (Wolfe et al., 2020), which has been previously 
used to demonstrate a low prevalence effect for hazard detec-
tion in road video (Kosovicheva et al., 2023; see Fig. 7). The 
stimulus set contains a wide variety of dashboard-camera 
videos of real road scenes, sourced from the internet, that 
contain hazardous events, along with a matched control set 
of nonhazardous video clips, recorded across a range of dif-
ferent environments (e.g., highway, city streets), weather, 
and lighting conditions. Here, a hazard is defined as a situ-
ation requiring an immediate driver response (e.g., turning 
the steering wheel or braking) to avoid a collision.

Fig. 7  Sample Stimuli for Experiment 3. A) Samples from the hazard 
present videos, image shows the hazard onset. B) Samples from the 
hazard absent videos

https://www.prolific.com
https://www.prolific.com
https://osf.io/khry6
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The videos were previously annotated for the time that 
the hazard onset began (first time point at which the hazard 
deviated from its normal state) and when the driver made 
a response (first time point at which the response—brak-
ing or swerving—was visible in the video). For the hazard-
present videos, the location of the hazard (e.g., a car swerv-
ing into a lane) was also annotated (for details, see Song & 
Wolfe, 2024). The annotated hazard location was defined 
by a polygon, annotated for each frame between the haz-
ard onset and the time of the driver response. For analyzing 
click locations in the current experiment, hazard location 
was determined by the location of the hazard at the time 
of the driver response, which is the last frame of the video 
shown to participants.

For the hazard-present clips, the experiment used 201 
of the original videos from Wolfe et al. (2020). All of the 
original videos were trimmed into 333-ms long clips for the 
purposes of this experiment. For the hazard present videos, 
the clips were taken from 333 ms immediately preceding 
the onset of the driver response to the hazard in the video. 
For the matched set of hazard absent videos, video seg-
ments were taken from the hazard-present videos at least 
10 s before hazard onset, whenever possible. From these 
segments, we extracted 333-ms clips every 3 s in the video. 
With this video set and durations tested, the hazard and 
nonhazard videos are readily discriminable at 87% accuracy 
(Kosovicheva et al., 2023).

In the final video set, there were 201 hazard present vid-
eos (with annotations for hazard onset and location), and 
924 hazard absent videos (no annotations available). Each 
video had a resolution of 1,280 × 720 pixels and a frame 
rate of 30 fps.

For the catch trials, we used 1,000 ms video clips of non-
driving scenes, sourced from YouTube and public-domain 

stock footage websites (e.g., Pexels.com). There were 80 
total catch-trial videos, composed of footage of everyday 
settings (e.g., a living room, a beach) and activities (e.g., 
cooking, hiking). Each video had a resolution of 1,280 × 
720 pixels. These trials were primarily used as a data quality 
measure and to remove possible automated (i.e., nonhuman 
responses).

Procedure

This procedure was adapted from Kosovicheva et al. (2023). 
Each trial started with a random noise mask (1,280 × 720 
pixels) for 250 ms (see Fig. 8). Following the mask was a 
333-ms road video. After the video, another 250-ms noise 
mask was presented. In the high-prevalence condition, road 
hazards were present in 50% of the videos. In the low-prev-
alence condition, road hazards were present on 4% of trials. 
Videos were presented in random order, without repeating 
any videos within a participant. Participants were told what 
the relative prevalence of the hazards would be (“hazards 
will be relatively rare” or “hazards will appear frequently”) 
prior to the start of the experiment. For the low-prevalence 
condition, there were 350 trials (14 hazard present trials) and 
for the high-prevalence condition there were 308 trials (154 
hazard present trials). On each trial, participants completed 
two tasks.

Hazard localization task The first is the “hazard localiza-
tion” task (analogous to the similarity search task from 
Taylor et al., 2022). Participants were instructed that they 
needed to determine the location of the most hazardous 
object in the video (i.e., what in the video has the great-
est potential to be a road hazard), regardless of whether 
or not a hazard was actually present. After the final mask, 

Fig. 8  Trial Sequence for Experiment 3. For the hazard localization 
task, participants were instructed to click where they thought the 
most hazardous location in the video was (a 250-ms mask appeared 
before and after the video). For the binary decision task, participants 

indicated if they would need to make a response to the hazard they 
selected in the localization task (brake or turn the steering wheel). 
Participants were then shown feedback based on the binary decision 
(regardless of accuracy on the localization task)
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participants were presented with a grey rectangle (1,280 × 
720 pixels) and were asked to click within the rectangle to 
indicate where they thought the most hazardous object from 
the road video was. Responses were not speeded.

Binary decision task The second task was the “binary deci-
sion” task, where the participant indicated if they would 
need to make a response to the hazard they selected in the 
localization task. More specifically, if the participant was 
the driver, would that hazard require a response in an on-
road situation (e.g., turning the steering wheel or needing 
to brake) to avoid the hazard? Participants made their deci-
sions using their keyboards (down for “yes, I would need to 
respond”; up for “no, I would not need to respond”). They 
were given feedback on every trial as to whether or not their 
binary decision was correct (regardless of where the par-
ticipant clicked).

The two conditions (high and low prevalence) were com-
pleted across two different sessions on different days, and 
condition order was counterbalanced across participants. 
Prior to the start of the main experiment, participants com-
pleted 28 practice trials where hazard prevalence was always 
50%.

Catch trials Interleaved throughout the experimental trials 
are catch trials. On a catch trial, a nondriving scene video 
clip (1,000 ms) was presented, and participants needed to 
indicate if the scene was indoors (press the “up” key) or 
outdoors (press the “down” key). There were 28 catch trials 
during both the high- and low-prevalence conditions, for a 
total of 56 catch trials across the two sessions.

Analysis

Hazard localization task To examine accuracy on the haz-
ard localization task, we determined if a click was within 
the hazard location polygon (for hazard-present trials only). 
Because participants were clicking on a grey rectangle and 
not the final frame of the video, we expanded the boundary 
of the hazard polygon by 50 pixels in all directions. This was 
also done to account for positional error due to representa-
tional momentum (Freyd & Finke, 1984) or motor response 
error. Clicking within the polygon counted as a “correct” 
response. We then compared accuracy between the high- 
and low-prevalence conditions using a paired-sample t test.

To show that participants were not just randomly clicking 
on the screen, we repeated the above analysis but randomly 
shuffled the polygon coordinates with the videos (so each 
video now had the wrong hazard location annotation). If par-
ticipants were just randomly clicking on the screen, shuffling 
the hazard locations would not change the results.

Binary decision task For each participant and prevalence 
condition, we calculated the miss rate (proportion of hazard-
present trials where the participant successfully located the 
hazard in the localization task and then said they would not 
need to respond to that hazard) and false-alarm rate (pro-
portion of hazard absent trials where the participant incor-
rectly classified the road video as containing a hazard). We 
then examined differences in hits and false alarms across 
the prevalence conditions using two paired-sample t tests.

In addition, we performed a signal detection analysis 
to examine changes in sensitivity (d′) and criterion on the 
binary decision task using a series of paired-sample t tests. 
Criterion and d′ were both calculated using the psycho 
library in R (Makowski, 2018).

Results

Hazard localization task

There was no difference in accuracy (proportion of cor-
rect clicks inside the hazard location polygon) between 
the high- and low-prevalence conditions, t(15) = .88, p 
= .40, Cohen’s d = .22 (see Fig. 9). Therefore, people 
were equally likely to click on the correct hazard location 
in both the high- and low-prevalence condition. Accu-
racy was also fairly high at 84% (collapsed across preva-
lence). When simulating random clicking, click accuracy 
dropped to 31% (collapsed across prevalence), showing 

Fig. 9  No LPE for road hazard localization task in Experiment 3. 
There was no difference in accuracy between the high- and low-prev-
alence conditions in the hazard localization task. The dashed line rep-
resents what accuracy would be if participants were randomly click-
ing on the screen. Error bars are Morey’s SEM (Morey, 2008)
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that participants were not just randomly clicking on the 
screen, and had in fact correctly located the hazards.

Binary decision task

Figure 10 shows miss rate, false-alarm rate, d′ and crite-
rion. Miss rate was significantly higher in the low-prev-
alence condition compared with high, t(15) = 4.02, p = 
.001, Cohen’s d = 1. False-alarm rate was significantly 
lower in the low-prevalence condition compared with high 
t(15) = 5.69, p < .001, Cohen’s d = 1.42.

There was no difference in d′ between the high- and 
low-prevalence conditions, t(15) = 1.98, p = .07, Cohen’s 
d = .50. Criterion was significantly higher in the low-prev-
alence condition compared with high, t(15) = 7.23, p < 
.001, Cohen’s d = 1.81.

Discussion

This pattern of results shows that in the low-prevalence con-
dition, participants successfully located the hazard (with 
equal accuracy to the high-prevalence condition), but then 
said they did not need to respond to it. Therefore, any ben-
efit of the similarity search in the localization task did not 
transfer to the binary decision task.

General discussion

Many interventions have been tested in an effort to reduce or 
even eliminate the LPE (e.g., Fleck & Mitroff, 2007; Had-
jipanayi et al., 2023; Schwark et al., 2012). A more recent 
approach found that having participants identify the most 
target-like item (requiring a “target-present” response on 
each trial, eliminated the LPE (Taylor et al., 2022). However, 

Fig. 10  LPE for the Binary Decision Task in Experiment 3. A Misses 
were significantly higher in the low-prevalence condition compared 
with high. B False alarms were significantly lower in the low-preva-
lence condition compared with high. C Sensitivity was not impacted 

by prevalence. D Criterion was significantly higher (more conserva-
tive) in the low-prevalence condition compared with high. Error bars 
are Morey’s SEM (Morey, 2008)
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many real-world searches require a binary decision about 
the selected target (e.g., “Is this item in a suitcase really 
a weapon?” “Do I need to hit the brakes?”). Across three 
experiments, we investigated if similarity search extends to 
binary decisions that need to be made about the target in 
classic search paradigms and with more naturalistic stimuli. 
Overall, we found that similarity search can sometimes be 
helpful in target identification but did not translate to binary 
decision-making.

Does similarity search improve target selection 
during low prevalence?

In Experiment 1, we found that the LPE was still present 
even under regular similarity search conditions. While this 
appears to contrast with Taylor et al.’s (2022) results, we 
note that any effect of prevalence is relatively small in both 
studies. The similarity search condition in Taylor et al.’s 
(2022) Experiment 3 (the most similar to our own similar-
ity-search-only condition) showed a (nonsignificant) differ-
ence in miss rate between the high and low prevalence of 
4.7%. Our observed difference for Experiment 1 (similarity 
search only) was 8.6% (and was significant). However, in 
both cases, this is notably lower than the 17.4% difference 
in miss rate Taylor et al. (2022) found with a conventional 
present/absent search. We want to emphasize that, although 
we observed an LPE in the similarity search tasks, it is pos-
sible that this represents a reduced LPE relative to what it 
would have been if participants completed a present/absent 
search. It is possible that similarity search attenuates, but in 
our case did not fully eliminate, the LPE.

Conversely, in Experiment 2, we found that there was 
no LPE present for the similarity-search-only task, which 
more closely aligns with what Taylor et al. (2022) found. 
The difference in accuracy between low and high prevalence 
was also more similar to Taylor et al. (2022), at 5.6% (not 
significant). There was an LPE present for the similarity 
search portion of the similarity search & binary decision 
task. For this task, feedback was only ever given about the 
binary decision (and not the search task), so participants 
could not learn anything about the accuracy of their search, 
and thus could not use the feedback to improve their search 
performance. As feedback is an important moderator of the 
LPE (Lyu et al., 2021; Schwark et al., 2012; Wolfe et al., 
2007), we speculate that it may be the difference in feedback 
driving this effect.

For both Experiments 1 and 2, we found no difference 
in average reaction times between the high- and low-
prevalence conditions on the similarity search task. This 
shows that participants were not terminating their search 
early in the low-prevalence condition. This is in line with 
predictions made in Taylor et al. (2022), where they specu-
lated that similarity search increases the quitting threshold 

because participants must make a target present response 
each trial. This fits with the two-stage LPE model pro-
posed by Wolfe and Van Wert (2010) where there is a 
quitting threshold (“have I found the target yet?”) and a 
decision criterion (“Is this item the most T-like shape?”). 
We note that in similarity search, the criterion is based on 
a continuum of T-like shapes and does not require partici-
pants to classify the target as a true T or a non-T. With the 
inclusion of the binary decision task, we may have added a 
third step to this process, where the final decision criterion 
is “is my selected target a true T?”

We did not do the same set of reaction time analyses 
for Experiment 3, as it was not a search task (participants 
clicked on a grey square after watching the video). As such, 
response times on this task are not particularly informative 
for determining the underlying search processes.

Following the results of Experiment 2, we also find that 
similarity search may be useful in other contexts. Consistent 
with the findings of Taylor et al. (2022), we did not observe 
an LPE in Experiment 3 when participants engaged in simi-
larity search during a road-hazard-detection task. In standard 
road-hazard-detection tasks (i.e., present/absent detection 
tasks), observers are more likely to miss the road hazards 
when they are rare (Kosovicheva et al., 2023). Therefore, 
instructing participants to find the most hazardous location 
in the video on every trial did help participants locate the 
real road hazards.

Inflating the target prevalence via similarity search likely 
helped maintain participants’ expectations for a target-pre-
sent response on every trial, as suggested by Taylor et al. 
(2022). Although criterion cannot be directly measured 
in the hazard localization task (there is no possible way to 
“false alarm” or “correctly reject” in this paradigm), we 
speculate that observers are widening their criteria for what 
constitutes a “hazardous location.” In order to select a haz-
ardous location, they need to broaden their criteria to include 
locations that pose absolutely zero danger to the driver (e.g., 
a traffic cone on the sidewalk).

Another plausible reason for why we observed a sig-
nificant LPE with similarity search in Experiment 1 (and 
in one condition of Experiment 2), but not in in Experi-
ment 3, is that the nature of the two tasks (T search and 
road-hazard detection) are different. Specifically, the road-
hazard-detection task pertains less to “search” and is more 
to do with detection. Task differences are also reflected in 
overall performance. Average accuracy for T detection dur-
ing high prevalence (collapsed across task type) was 57% 
for Experiment 1 and 60% for Experiment 2 (comparable 
with the average accuracy in Taylor et al., 2022). Conversely, 
average accuracy for road-hazard detection was 85% (col-
lapsed across prevalence), suggesting that the road-hazard-
detection task was overall easier. In other words, task dif-
ficulty may moderate the effectiveness of similarity search.
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Does similarity search extend to binary decisions 
about the targets?

In both Experiments 1 and 2, we found that there was also 
an LPE for the binary decision that followed target selection. 
Importantly, this LPE was present when participants 
correctly found the target during the search task. Even 
when the target was successfully located, participants were 
less willing to label it as a true T during periods of low 
prevalence compared with high. The difference in miss 
rate between high and low prevalence was substantial and 
comparable with what is commonly seen in other LPE 
studies (where miss rate in the low-prevalence condition 
is approximately twice what it was for high prevalence; 
Wolfe et al., 2007). In line with previous LPE studies, this 
manifested as a difference in criterion, but not in sensitivity 
(Wolfe et al., 2007).

This double LPE is interesting, as it suggests a disso-
ciation between target detection and the subsequent binary 
decision. If similarity search shifts participants’ criterion to 
become more liberal by requiring them to identify a target 
on each trial, there should not have been a large LPE for the 
binary decision. Instead, it appears that participants adopt 
multiple criteria regardless of whether or not the similarity 
search helps them find the targets.

Though we did not find an LPE in Experiment 3 for the 
hazard localization task, we did find an LPE for the binary 
decision task. Even when participants clicked on the correct 
location of the hazard, they were less willing to classify it as 
a hazard during periods of low prevalence compared with 
high. The criterion for what constitutes a road hazard in the 
search task may have become very liberal. However, the 
criterion for binary response selection (e.g., braking vs. not 
braking) became more conservative during low prevalence.

Across the three experiments, we find that similarity 
search does not transfer to binary decisions that need to be 
made about the selected target, regardless of whether or 
not similarity search improves target detection. Within a 
signal detection framework, this suggests that observers are 
maintaining different criteria for the similarity search and 
the subsequent decision. These results are also consistent 
with a previous experiment by Wolfe et al. (2005), in which 
participants reported the presence of any one of four types 
of targets, each with its own prevalence (chosen from 1%, 
5%, 10%, or 34%). This task raised the probability of any 
target being present to 50% of trials. Nevertheless, the 
results showed that participants maintained separate decision 
criteria for different items that had different prevalence rates; 
observers successfully found the common items, while rare 
items were missed.

The results of Wolfe et al. (2005) align with the current 
study, in which there was an inflated prevalence of targets 
during detection or localization (“most T-like shape”; “most 
hazardous location”). However, the prevalence of targets 
that needed to be classified as “true” targets in the binary 
decision task was much lower, and participants adopted 
multiple criteria accordingly. The results of our experiments 
suggest that similarity search may be useful in some settings. 
However, applying it to cases where the participant may 
need to make a decision about the selected target would 
require further work to be adopted in real-life situations.
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