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Predicting road scenes from brief views of driving video
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If a vehicle is driving itself and asks the driver to take
over, how much time does the driver need to
comprehend the scene and respond appropriately?
Previous work on natural-scene perception suggests that
observers quickly acquire the gist, but gist-level
understanding may not be sufficient to enable action.
The moving road environment cannot be studied with
static images alone, and safe driving requires
anticipating future events. We performed two
experiments to examine how quickly subjects could
perceive the road scenes they viewed and make
predictions based on their mental representations of the
scenes. In both experiments, subjects performed a
temporal-order prediction task, in which they viewed
brief segments of road video and indicated which of two
still frames would come next after the end of the video.
By varying the duration of the previewed video clip, we
determined the viewing duration required for accurate
prediction of recorded road scenes. We performed an
initial experiment on Mechanical Turk to explore the
space, and a follow-up experiment in the lab to address

Massachusetts Institute of Technology,
Cambridge, MA, USA

Department of Brain and Cognitive Sciences,

Massachusetts Institute of Technology,
Cambridge, MA, USA EI

questions of road type and stimulus discriminability. Our
results suggest that representations which enable
prediction can be developed from brief views of a road
scene, and that different road environments (e.g., city
versus highway driving) have a significant impact on the
viewing durations drivers require to make accurate
predictions of upcoming scenes.

Drivers must generate an accurate representation of
their environment in order to anticipate the future
locations of other vehicles, cyclists, and pedestrians. In
considering the relationship between perception and
prediction, one must ask: How much visual informa-
tion does a driver need to accurately predict future road
scenes? In driving research, this question is usually
framed in the context of the driver’s need to develop
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situation awareness (Endsley, 1995), a cognitive model
reliant on the driver’s ability to perceive and compre-
hend their environment prior to prediction. Such
awareness is frequently conceived as being built up over
periods of seconds, and sometimes minutes, as the
driver develops a detailed mental representation of key
elements and interactions from a dynamically changing
scene. In contrast, work in vision science has shown
that subjects can perceive the essence, or gist, of static
natural scenes in less than 100 ms (Greene & Oliva,
2009), although a gist-level representation may be
insufficient for predicting a moving scene or operating
a vehicle safely. Probing the differences between these
accounts may be critical for understanding how quickly
drivers can assess situations and make decisions. This
work is particularly timely, given the rapidly expanding
deployment of automated vehicle systems that, at
variable frequency, require safe exchange of control
between vehicle and driver under time pressure. Unlike
drivers of largely manually controlled vehicles, drivers
of more highly automated vehicles may not need (or be
willing) to maintain a continuous representation of the
environment while the vehicle is in motion. If we are to
have automated vehicles where a handoff may be
required, whether these handoffs are planned or not,
we must understand how long the driver will need to
perceive and predict the world after a period during
which they have not been paying attention.

To put our work and approach in context, we will
first discuss how the driver’s representation of the
environment has been considered in driving research.
According to Endsley (1995), a driver’s situation
awareness refers to their understanding of the operat-
ing environment (the road and surroundings) and their
ability to respond to changes in that environment while
maintaining control over their vehicle. In this defini-
tion, situation awareness develops via a three-stage
process, beginning with perception of visual elements in
the scene, which are then processed in relation to the
individual’s goals to enable prediction of future events
in the environment. The driver is thought to then be
able to act on these predictions, based on their
awareness of their operating environment in relation to
their goal state. However, Endsley also discusses
evidence that experts, as a consequence of their
expertise, recognize the correct action relative to their
goal state without deliberation. That said, Endsley’s
theory does not describe how this process might work,
or what timescale it occurs on, but merely suggests that
these stages might be a way to consider the problem.

In contrast, vision-science research on scene per-
ception indicates that extracting the gist of a scene is a
fast process (Larson & Loschky, 2009; Oliva, 2005;
Oliva & Torralba, 2006). The gist, sometimes conceived
of as the one or two sentences one would use to
describe the scene, is often operationalized as the
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information available in a single glance. It consists of
often-holistic properties of the scene, such as the broad
category to which it belongs or the degree to which it
can be readily navigated. Subjects are able to perceive
the gist of a scene with less than 100 ms of viewing time
(Greene & Oliva, 2009). However, while gist perception
is fast, it is often probed with broad questions that are
less applicable to driving—for example, “Is this scene
navigable at all?” or “Is this a city or a highway scene?”
Therefore, a gist-level understanding of the driving
environment may not be enough to enable safe driving;
the driver needs to know more than whether they are
on a highway or an urban road. For that matter, this
work has been done with static images of natural scenes
rather than video, and it is unknown how these results
will extend to dynamic scenes. We would argue that the
ability to extract the gist of a scene on the timescale
previously reported (e.g., in 100 ms or less) suggests
that situation awareness is, to some degree, reliant on
these fast processes. A more complete answer may be
found between the time courses suggested, respectively,
by the gist and situation-awareness literatures.

Something of a middle ground exists between these
two views of visual perception and prediction when we
look to the hazard-perception literature, where subjects
are asked to view still images or videos of driving scenes
and either assess the relative hazard (Pelz & Krupat,
1974) or report the presence of hazards in the stimulus
(McKenna & Crick, 1994). In brief, this body of work
suggests that drivers learn to search for hazards
(Underwood, Crundall, & Chapman, 2002) in partic-
ular locations in the scene—for example, where they are
more likely to be present (Mackenzie & Harris, 2015;
Underwood, Phelps, & Wright, 2005) and where they
may be occluded by other objects (Alberti, Shahar, &
Crundall, 2014). Given the role of prior knowledge
here, there are strong similarities to the idea of scene
grammar (Draschkow & V&, 2017) in visual search,
where what belongs (or not) in the scene influences
search speed and accuracy. However, hazard-percep-
tion studies explicitly probe the perception and
prediction of only one visual category (road hazards),
not the driver’s visual input and representation more
broadly.

Whereas classifying static scenes, as used in scene-
gist studies, requires very little time, predicting changes
as part of the driver’s situation awareness is likely a
slower process. That said, probing a driver’s represen-
tation of their environment, the foundations of their
situation awareness, is a difficult problem; the re-
searcher must consider both the stimuli and the task
used to probe questions of representation. Prior work
on this question (Lu, Coster, & de Winter, 2017) has
used simulated environments to maximize control over
the stimuli, but given subjects tasks that were quite
dissimilar from those drivers would encounter on the



Journal of Vision (2019) 19(5):8, 1-14

road (e.g., asking about where other cars were on the
road and their relative speed). Drawing closely from
prior work in scene-gist research would also limit the
relevance to natural tasks, as examining representation
for prediction in driving requires different questions.

In order to probe subjects’ representations of the
road environment in a more realistic way, we developed
a temporal-order prediction task based on video taken
from drives around the Boston area. We asked our
subjects to watch a brief segment of road video and to
indicate which one of two subsequently presented still
images would come next (similar to the What Happens
Next task described by Jackson, Chapman, & Crundall,
2009, but asking subjects to choose between two
images). This task required subjects to develop a
sufficiently robust representation of the scene and to
make general predictions of how the scene would
change overall in the immediate future, distinguishing
this from other, less temporally proximate images. This
allowed us to probe subjects’ representations at a broad
level, without focusing on a single element or feature in
the environment, as well as to probe both perception
and prediction in a single task.

To gain an understanding of drivers’ ability to make
predictions about future events on the roadway, we ran
an experiment using short (100—4,000 ms) clips of
forward-facing road video on Amazon Mechanical
Turk and asked subjects to judge, using two still images
from the source video, which image they believed
would come next after the video they had seen. In
contrast to previous efforts in driving research at
probing representations of the driving environment,
this design avoided explicit reliance on specific features
in the scene (e.g., vehicle color, position, or speed) and
tested drivers’ overall ability to perceive the scene,
similar to some tasks in the representational-momen-
tum literature (see Blittler, Ferrari, Didierjean, &
Marmeche, 2012). By manipulating both the duration
of the clip and the temporal separation of the two test
images, we probed the duration required for subjects to
develop a sufficiently robust representation as a
function of task difficulty. We also predicted that
performance on the task would vary as a function of
the contents of the scene, and therefore tested two road
environments: highway and urban settings. We note
that Experiment 1 was previously presented as a
conference paper at Driving Assessment 2017 (Wolfe,
Fridman, et al., 2017).
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Participants

Subjects were recruited through Amazon Mechanical
Turk, and provided informed consent prior to partic-
ipating in the experiment (as required by MIT’s
Committee on the Use of Humans as Experimental
Participants, and in accordance with the Common
Rule). Subject age and gender were not recorded, in
accordance with institute policy for Mechanical Turk
experiments. Subjects were compensated for their time
at a rate of 1 cent per completed trial, with a bonus of
§$10 for completion of the entire set of trials (and a total
compensation of $20 for approximately 1 hr of testing).
A total of 31 subjects completed the experiment, and
data from 27 were retained in the final analysis. Three
subjects were excluded from the final analysis because
their overall performance on the task was no better
than chance (binomial test, p > 0.05). A fourth subject
was excluded from the analysis due to an error that
allowed them to complete the task twice.

Stimuli

Videos were taken from random time points within
16 4-min segments of forward-facing road video,
recorded from a centrally mounted camera inside a
vehicle that was driven on both highways and surface
roadways near Boston. Prior to the experiment, two
expert observers classified these 16 videos into two
road-type conditions—urban or highway—resulting in
eight videos per condition. Urban videos typically had
speeds below 40 mph and were recorded in urban or
suburban settings, and highway videos consisted of
multilane, high-speed driving. All videos contained
uneventful, mundane driving, with no proximate
hazards (e.g., unsignaled lane changes, near-collision
events, collisions), in order to focus on subjects’ ability
to predict the scene as a whole rather than respond to
immediate hazards. Our criteria were intentionally
broad, controlling road type (urban vs. highway) and
allowing more granular elements (e.g., number of lanes,
traffic level) to vary, since the goal of this work was to
probe representation and prediction broadly. Videos
were recorded and presented at 720p (1,280 X 720)
resolution at 29.97 frames/s.

For the experiment, the 4-min video segments were
divided into shorter clips that were shown to subjects in
individual trials (Figure 1a). Video clips for the preview
stage of each trial had one of seven possible preview
durations—0 (no video), 100, 233, 500, 1,000, 2,000,
and 4,000 ms—selected from random time points
within the clip. In addition, we extracted two still
frames for the response screen on each trial. The first
frame of each pair was always taken from 500 ms after
the end of the preview clip for that trial, and the second
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Figure 1. Stimulus sequence and video-clip extraction procedure for Experiment 1. (a) Stimulus sequence for a single trial. Subjects
started each trial by clicking on a button in the Mechanical Turk interface and were shown either a stimulus clip (with a variable

preview duration, 100-4,000 ms) or no video, followed by the response screen. Subjects’ task was to report which of the two images
on the response screen they believed came next. (b) Visualizations of the response screen. On most trials, subjects were shown two
still images that came after the end of the video clip. In attentional catch trials, they were shown one still that matched the video and
one image unrelated to the video. (c) Diagram of video-clip extraction for individual trials. Each stimulus clip was selected from a
random time point within a longer (4-min) video. For the two images on the response screen, one of the still frames corresponded to
500 ms after the end of the clip and the other corresponded to a time point between 100 and 4,000 ms after the first still frame.

was selected from one of eight time points after the first
frame: 100, 233, 500, 733, 1,000, 2,000, 3,000, or 4,000
ms. This resulted in eight frame-separation conditions,
which were intended to manipulate the difficulty of the
temporal-order discrimination task (i.e., answering the
question “Which one comes next?”). We predicted that
still frames that were more closely spaced in time (e.g.,
100 ms, or three frames) would be harder to
discriminate than ones more widely spaced in time (e.g.,
2,000 ms, or 60 frames).

Procedure

The procedure on each trial is outlined in Figure 1a.
On all trials (except the 0-ms preview-duration
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condition), subjects were first shown a video clip (720
pixels in height, between 100 and 4,000 ms in duration;
see Stimuli) on a white background. Videos were
presented without sound to avoid any extraneous
auditory cues. The video was immediately followed by
a response screen consisting of two still frames
presented side by side (360 X 640 pixels each,
horizontally separated by 100 pixels). In a two-
alternative forced-choice task, subjects were asked to
report which of the images would come first after the
video they had watched. The two still frames were
randomly assigned to the left and right locations on
each trial. Note that both still images were taken from
after the end of the clip, so subjects performed a
temporal-order prediction task, mentally ordering the
clips based on their internal representation of the scene
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and reporting which one was temporally closer to the
end of the clip. Subjects were instructed to click on the
still frame they believed to be the one that came next,
and were given an unlimited amount of time to
respond. After responding, subjects were shown a
screen with a button labeled “Click to start next trial,”
and initiated the next trial with a mouse click when
ready to continue. Subjects were not given any
feedback on the accuracy of their responses. Supple-
mentary Movie S1 shows several trials similar to those
used on Mechanical Turk.

In the 0-ms preview-duration condition, subjects
were shown only two still images, with no preceding
video. Subjects performed the same task here, answer-
ing which still frame came first in time, but without the
benefit of a previously shown scene. Since the still
images are themselves informative and contain cues
about events and changes in the driving scene, we
expected that subjects could perform above chance
level (50% accuracy) in this condition by reporting the
earlier of the two still frames. Therefore, data from
these trials provides a baseline level of performance for
comparisons to the trials that included video clips.

Each subject completed eight trials for each unique
combination of road type (highway or urban), preview
duration (seven durations), and frame separation (eight
separations), presented in a random order. Since we
performed this experiment on Mechanical Turk, we also
added attentional catch trials to detect automated
answering or failures to watch the video. These catch
trials resembled the temporal-order prediction trials and
were randomly intermixed with the rest of the experi-
ment. In the catch trials, subjects were first shown a road-
video clip with a randomly selected duration between 100
and 4,000 ms to match the rest of the experiment. Instead
of the temporal-order prediction task, they were asked to
indicate which of two still images matched the clip they
had just seen. In the catch trials, one still image matched
the clip and one had nothing in common with it (e.g., a
beach scene), having been hand-selected from a Google
image search to be trivially discriminable from the road-
scene still images. Subjects who failed more than two of
these attentional catch trials were automatically termi-
nated from the study and compensated for the trials they
had completed to that point. No subjects in the final
sample of 27 missed more than one catch trial in the
experiment. The full experiment, with catch trials, took
approximately 1 hr for subjects to complete, and
included 896 temporal-order prediction trials for all
subjects who completed the experiment.

Analysis

Attentional catch trials were removed prior to any
analysis, and we calculated subjects’ performance
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(percentage of correct responses) in each condition in
the remaining trials. To determine how performance on
the temporal-order prediction task changed as a
function of the variables we manipulated, we analyzed
the percentage of correct responses with a 2 (road type)
X 7 (preview duration) X 8 (frame separation) repeated-
measures analysis of variance using R Version 3.50.
Effect size is reported as partial eta-squared.

Results

Figure 2 shows mean group performance for each
combination of frame separation, preview duration,
and road type. We found a main effect of frame
separation on subjects’ performance, F(7, 182) =
24.002, p < 0.001, nzp = 0.48), indicating greater
accuracy at larger frame separations (Figure 2a; upper
region of heat map and upward trends in line plots in
Figure 2c and 2d). As expected, stills that were spaced
far apart in time were easier to discriminate than stills
that were close together in time (64.1% vs. 78.3%
overall accuracy in the 100-ms vs. 4,000-ms conditions,
respectively). We also found a significant main effect of
preview duration, F(6, 156) = 7.39, p < 0.001, °, =
0.22, indicating better performance when subjects were
shown a longer video clip before performing the
temporal-order task (Figure 2a; right side of heat map
and colored lines in Figure 2c and 2d). Overall,
performance increased from 71.6% to 74.6% from the
0-ms (no-video) to the 4,000-ms preview-duration
conditions (minimum and maximum performance were
observed in the 100-ms and 2,000-ms conditions, with
69% and 75.7% accuracy, respectively). There was also
a significant Preview duration X Frame separation
interaction, F(42, 1092) =4.001, p < 0.001, nzp =0.13,
indicating a relationship between how long subjects
were able to view the scene and task difficulty, with the
combination of large frame separations and long
preview durations (upper right quadrant) producing
the highest accuracy in the task. The highest accuracy
(88.9%) was observed with a combination of a 4,000-ms
preview duration and a 4,000-ms frame separation.

In addition, we found a significant main effect of
road type, F(1, 26)=22.52, p < 0.001, nzp =0.46; mean
accuracy was higher when subjects watched urban
compared to highway videos (74.3% vs. 71.1%,
respectively; Figure 2b and 2d). This difference between
video types varied as a function of the other stimulus
manipulations. Specifically, we observed a significant
two-way Road type X Frame separation interaction,
F(7, 182) = 6.14, p < 0.001, °, = 0.19. Pairwise
contrasts between the two road types at each frame
separation indicated significantly higher accuracy in
urban compared to highway videos, primarily at frame
separations in the middle of the range that we tested (at
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Figure 2. Results for Experiment 1, presented as heat maps (a—b) and line plots (c—d). (a) Mean performance on the temporal-order
prediction task, separated by frame separation and preview duration (n.v. = no video, or the 0-ms condition) and collapsed across
road type. Darker colors indicate better performance. Note the increase in performance with longer video durations, analogous to
longer eyes-on-road durations, and longer frame separations, which make frame-to-frame discrimination easier. (b) Mean
performance on temporal-order prediction task by preview duration and frame separation, separated by road type (highway and
urban). Note the same overall pattern as in the collapsed data in (a). (c) Mean performance by separation, visualizing the same data
as (a). (d) Mean performance by separation, split by road type as in (b). The same pattern is visible, but note that the prediction task
becomes easier the greater the frame separation, since the frames become more easily discriminated. Error bars for (c) and (d) are

+1 standard error of the mean.

500, 1,000, and 2,000 ms, all p values < 0.001), with a
smaller, nonsignificant difference at 3,000 ms (p =
0.052). All other comparisons were nonsignificant (all p
values > 0.23). There was no significant Road type X
Preview duration interaction, F(6, 156)=1.32, p=0.25,
nzp =0.05. However, there was a significant three-way
Road type X Preview duration X Frame separation
interaction, F(42, 1092) =4.51, p < 0.001, nzp =0.15,
suggesting that the three factors are interrelated; and
the difference in performance between the two road
types (urban and highway) depended jointly on the
frame separation and preview duration. However, any
systematic patterns driving this interaction were diffi-
cult to ascertain from inspection of the data in Figure 2.
We note that, given the complexity of these interac-
tions, we simplified this design in our follow-up
experiment, which measured frame-separation thresh-
olds in a more immersive, controlled setting, testing
three preview durations across two road types (urban
and highway).
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Discussion

Our goal in this experiment was to examine subjects’
perceptions of brief driving scenes by probing their
representation of the scene as a whole, rather than
specific objects within the scene. By varying the preview
duration, the difficulty of the task, and the contents of
the scene, we examined the perceptual space here in a
comprehensive manner, closer to the methods used in
the gist literature than those used in studies of situation
awareness. While this task is similar to the What
Happens Next task (Jackson et al., 2009), there are two
critical differences: Our subjects chose the proximate
frame from the two presented options, rather than
localizing, identifying, and predicting the hazard, and
our stimuli did not involve immediately hazardous
situations. In addition, manipulating preview duration
while allowing subjects to freely view the scene acts as a
proxy for—but not a direct measure of—the time a
driver would need to keep their eyes on the road before
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they could develop a representation of the environ-
ment. Varying frame separation allowed us to test a
wide range of task difficulties; given the nature of the
temporal-order prediction task, still frames separated
by brief durations are much more difficult to discrim-
inate than those separated by longer durations. By
including both urban and highway environments, we
were also able to assess the impact of scene content on
subjects’ ability to make predictions.

At one level, the temporal-order prediction task is
comparatively simple, since even the still images
contain information that subjects can use to build a
cognitive model of the scene and make relevant
predictions (Jackson et al., 2009; Ventsislavova et al.,
2016), as shown by the results of our no-video trials.
This is reminiscent of the paradigms used in the hazard-
perception literature (Jackson et al., 2009; Pelz &
Krupat, 1974), as well as experiments on representa-
tional momentum (e.g., Freyd, 1983), which have
measured subjects’ tendency to misremember the
endpoint of a scene or video as being further in the
direction of the implied motion. Much of this work has
focused on subjects’ biases in the remembered endpoint
of a sequence (Freyd & Finke, 1984), rather than their
ability to represent a dynamic natural scene and make
predictions about it. More recent work by Blittler and
colleagues (Blittler et al., 2012; Blittler, Ferrari,
Didierjean, van Elslande, & Marmeche, 2010) on
driving scenes has focused on whether subjects notice a
change in direction of road video (following an
interruption), rather than on their ability to predict the
scene directly, as our subjects were required to. In
contrast, the hazard-perception literature has focused
on drivers’ ability to report the presence of hazards
(McKenna & Crick, 1994; Scialfa et al., 2012) or make
a saccadic eye movement towards them to indicate
detection (Crundall, 2016; Crundall & Underwood,
1998; Mackenzie & Harris, 2015; Underwood et al.,
2005; Underwood, Ngai, & Underwood, 2013).

Subjects’ performance suggests that the information
available in either static images alone (no-video
condition) or very brief videos, while usable, constrains
performance in our task. As shown by the main effect
of preview duration, subjects generally performed
better when they were provided with longer video
segments (see Figure 2c). In other words, across the
range of preview durations we tested, the increase in
temporal-order prediction performance suggests that
providing more information in the preview phase
improves the fidelity of subjects’ representations of the
road environment. This is intimately linked to the
increase in performance across frame separation; as
separation increased, making the two frames more
discriminable and the task easier, performance on the
temporal-order prediction task improved. In particular,
subjects achieved the greatest accuracy (88.9%) with a
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combination of long preview durations (4,000 ms) and
large frame separations (4,000 ms).

Performance also depended on the type of road
environment shown. Since driving environments can
vary widely in their visual features, we included both
highway and urban videos in the stimulus set for this
experiment. One of the most striking results we
observed is that subjects performed better in urban
compared to highway environments. Although several
factors could contribute to this difference, one possi-
bility is that highway environments are often compar-
atively homogenous, with a wide, flat roadway
separated from other constructed elements, while urban
environments are less defined by the roadway itself and
contain a greater diversity of built structures and other
objects (e.g., cyclists, pedestrians, parked vehicles). In
addition, the angular subtense of road users and other
objects varies across urban and highway scenes as a
consequence of travel speed and roadway design (see
Supplementary Movie S1 for examples), although this
is inherent to the road environments in question. While
perceiving the gist of natural scenes is a very fast
process and minimally affected by the contents of the
scene (Greene & Oliva, 2009), it appears that making
predictions of natural scenes in motion requires more
time and may show a larger effect of scene content than
gist perception.

Experiment 2: Separating driving

environment from duration

The results of Experiment 1 indicated that there was
a difference in subjects’ ability to perform the temporal-
order prediction task as a function of road type, and
that both preview duration and frame separation were
linked to performance. However, as Experiment 1 was
an online study, the data were collected under variable
viewing conditions that would be very different from
everyday driving (i.e., in terms of stimulus size, overt
time pressure). We therefore rebuilt the experiment for
laboratory testing, rather than via Mechanical Turk, to
exercise greater control over stimulus presentation and
subjects’ experience. Videos were scaled to approximate
a 1:1 representation of the scene from the driver’s
viewpoint, and we instructed subjects to respond as
quickly and as accurately as possible. By using a more
immersive environment, we can gain a more complete
understanding of the impact of scene content on
subjects’ representation of the road environment. In
particular, if we observe a robust effect of road type,
consistent across preview conditions and in this type of
immersive setting, it may be a significant potential
factor when considering handoffs between automated
systems and drivers.
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Furthermore, it is unclear from the results of
Experiment 1 what factors contribute to the improve-
ment in performance with increasing preview duration.
Is this improvement driven by the motion information
in the scene, or would subjects perform similarly when
provided with a static image of the scene for an
equivalent duration? We therefore directly compared
performance across three preview conditions: 500 ms of
a still frame, 500 ms of video, and 2,500 ms of video. In
the 500-ms still-frame and video conditions, subjects
previewed the scene for the same duration but were
provided with motion in the latter condition only.

A final consideration in planning this follow-up
experiment was to simplify the design, allowing for a
more direct interpretation of the results. We modified
our procedure from Experiment 1, limiting the preview
conditions used and allowing the frame separations to
fluctuate using an adaptive staircase procedure, while
retaining the same fundamental task. Recall that
increasing frame separation makes the prediction task
easier, as the still frames differ from each other.
Therefore, instead of quantifying performance based
on accuracy in the task, we calculated the frame-
separation threshold for each condition—the minimum
separation necessary for 80% accuracy.

Participants

A total of six men and three women participated in
this experiment (mean age: 28.4 years), all of whom
were unaware of the purposes of the experiment. All
subjects provided written informed consent in accor-
dance with the requirements of MIT’s Committee on
the Use of Humans as Experimental Participants and
the Common Rule prior to participating in the
experiment. All subjects had normal or corrected-to-
normal vision and were licensed drivers with at least 1
year of driving experience. The experiment took
approximately 60 min to complete, and subjects were
compensated $20 for their time.

Apparatus

For this laboratory experiment, we rebuilt the
experiment with MATLAB (MathWorks, Natick, MA)
and Psychtoolbox (Brainard, 1997; Pelli, 1997) and
presented stimuli on an LG OLED TV (55-in. diagonal
size, resolution: 1,920 X 1,080 pixels, panel size: 120 X
70 cm) at a viewing distance of 57 cm. The stimulus
clips covered a large portion of the screen (78° X 44°) to
provide an immersive experience, approximating the
field of view of the in-vehicle camera used to record the
original videos. This provided observers with an
approximately 1:1 representation of the driving scene as
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the driver would have viewed it. Subjects’ head position
was maintained by a chin rest throughout the
experiment.

Stimuli and procedure

Stimuli were shown on a gray background. Video
clips and still images were taken from the same urban
and highway videos as in Experiment 1, and videos for
the preview portion of each trial were randomly
selected from nonoverlapping segments within the
longer 4-min road videos. Periods where the vehicle in
the video was not in motion (e.g., waiting at lights,
parked at the roadside, stopped at intersections) were
removed to avoid requiring subjects to predict up-
coming motion when the recording vehicle was static.
Video clips and images were shown at the center of the
display (78° wide and 44° high). To control exposure
duration, noise masks were shown before and after
each preview stimulus. Noise masks were the same size
and location as the video clips and were generated by
independently drawing random grayscale intensity
values for each pixel between black and white. A green
cross was centered on top of each noise mask (2° X 2°%
line width: 0.4°). Given the large size of the display, the
cross served to reorient subjects at the beginning and
end of the clip to the location of the display center.
Subjects were not given specific instructions about
where to look, and could view the video clips freely.

On each trial, subjects were shown a mask for 250
ms, followed by a road stimulus from one of three
preview conditions: a single still frame for 500 ms, a
stimulus clip for 500 ms, or a stimulus clip for 2,500 ms.
Immediately following the preview stimulus, subjects
were shown a second mask for 250 ms. After a 500-ms
interstimulus interval, subjects were shown a response
screen consisting of two still frames, similar to
Experiment 1, and performed the same temporal-order
prediction task. The two still images on the response
screen were shown side by side at the center of the
display (each 39° wide and 22° high), separated
horizontally by a 4° gap. The assignment of the two
stills to the left and right sides of the display was
balanced across trials. Subjects were asked to report
which of the two still frames presented would have
come next, based on the still or video they had just
seen, by pressing one of two arrow keys on the
keyboard. To prompt subjects to respond, the text
“Which still comes next?” was shown on the response
screen above the two stills, horizontally centered on the
display. The labels “LEFT arrow key” and “RIGHT
arrow key” were displayed underneath the left and
right image stills, respectively. Subjects were instructed
to respond as quickly and as accurately as possible
(across subjects, median response time was 2.09 = 0.73
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s). Following the response, the program automatically
advanced to the next trial. Trials were separated by a
500-ms intertrial interval consisting of a gray screen.
Supplementary Movie S1 shows several exemplar trials
from this experiment.

The still frames on the response screen of each trial
were selected so that one of the two frames corre-
sponded to a time point 500 ms after the end of the
preview clip or still. The second still frame was
randomly selected to be either before or after this time
point (referred to here as early and late intervals,
respectively). The separation between the two still
frames was adaptively varied from trial to trial using a
staircase procedure (see Staircase procedure for frame
separation). For example, if the time corresponding to
the end of the video on a given trial was 2,500 ms and
the separation between the two frames was 800 ms
(based on the staircase procedure), subjects were shown
one still frame at 3,000 ms (the correct answer) and the
other at either 2,200 ms (early-interval trial) or 3,800
ms (late-interval trial). Early and late intervals were
introduced to balance the number of trials in which
subjects were required to discriminate the correct frame
from one that was too far in the past (typically before
the end of the video clip) or too far in the future. Unlike
in Experiment 1, subjects would not be able to answer
correctly simply by reporting the earlier of the two still
frames. If the earlier of the two still frames temporally
overlapped with the video, the correct answer would be
the other (later) frame. Because subjects would not able
to deduce the correct answer from visual cues contained
within the still frames alone, we expected them to
perform at chance (50%) level if they did not use any
information from the video. Therefore, we omitted a O-
m (no-video) preview condition in Experiment 2.

Subjects completed 12 practice trials in which they
were given feedback on their accuracy (with a green
frame surrounding the chosen response if correct and a
red frame if the response was incorrect). Feedback was
not provided for the remainder of the experiment.
Following the practice, subjects completed a total of
480 trials, with 20 trials for each unique combination of
road type (highway or urban), interval type (early or
late), preview condition (500 or 2,500 ms video, or still
frame), and response-screen configuration (correct
response on left or right), shown in a random order.

Staircase procedure for frame separation

The separation between the two still frames varied
on a trial-to-trial basis and was controlled by 12
randomly interleaved adaptive staircases, one for each
unique combination of road type, preview condition,
and interval type (early vs. late). All staircases were
controlled by a three-down/one-up rule and terminated
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after 40 trials. The starting value of each staircase was a
2,000-ms frame separation, based on the results of
Experiment 1, which indicated that this separation was
comparatively easy for subjects. Separation values
increased or decreased by an initial step size of 300 ms,
which was reduced by 25% every three reversals.
Separation values were constrained to be between 67
ms (two video frames) and 3,000 ms. Because we used
an adaptive staircase design, performance (percentage
of correct responses) on the temporal-order prediction
task is no longer a measure of subjects’ ability to use
their representations of the driving environment (as it
was in Experiment 1), because the staircase is designed
to converge on ~80% accuracy. Rather, the frame-
separation threshold was estimated by averaging the
separations across all reversal points in each staircase.
This provides an estimate of subjects’ performance
across duration and road type, with lower thresholds
indicating that subjects can maintain that level of
performance with smaller frame separations.

Analysis

To calculate the frame-separation threshold for each
condition, we averaged the frame separations across all
reversal points within each staircase. To estimate
confidence intervals, we generated bootstrapped distri-
butions of separation thresholds for each condition by
resampling the reversal points with replacement and
averaging them, and repeating this procedure for 1,000
iterations (Efron & Tibshirani, 1993). These boot-
strapped distributions were generated individually for
each subject and then averaged to estimate group
confidence intervals. Nonparametric permutation tests
were used to perform pairwise comparisons between
the road types within each duration condition, as well
as comparisons between duration conditions within
each road type. For each comparison, we randomly
shuffled the labels for the two conditions and then
recalculated the threshold difference for the shuffled
data. This procedure was repeated for 1,000 iterations
to produce a null distribution of threshold differences
between pairs of conditions. The two-tailed p value was
calculated from the proportion of observations in the
null distribution with an absolute value greater than or
equal to the observed difference. The observed p values
were compared against a Bonferroni-corrected alpha,
o, for six comparisons.

Results
Figure 3 shows mean frame-separation thresholds

for each combination of road type and preview
condition. In the single-still-image preview condition,
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Figure 3. Results for Experiment 2. Mean separation threshold
by preview condition and road type (magenta and orange
indicate highway and urban stimuli, respectively). Note the
difference in separation threshold between highway and urban
driving environments, indicating that a greater separation
between test stills in the highway condition was required for
subjects to perform the task at the level enforced by the
adaptive staircase. All significant differences marked with an
asterisk (*) are ag < 0.008. Error bars represent bootstrapped
95% confidence intervals.

we found mean frame-separation thresholds of 2,247
ms for highway driving and 2,042 ms for urban driving
(p = 0.024, permutation test; ag = 0.008, therefore a
trending but not significant effect). In the 500-ms video
condition, we found mean frame-separation thresholds
of 2,271 ms for highway driving and 1,999 ms for urban
driving (p < 0.001, permutation test; ag = 0.008). In the
2,500-ms video condition, we found mean frame-
separation thresholds of 1,934 ms for highway driving
and 1,741 ms for urban driving (p =0.001, permutation
test; ag = 0.008). Consistent with the results of
Experiment 1, subjects’ performance improved with
longer preview durations. Comparisons between pairs
of duration conditions, averaged across road type,
showed significant differences between the single-still-
frame and 2,500-ms conditions (p < 0.001, permutation
test; ag = 0.008) and between the 500-ms and 2,500-ms
conditions (p < 0.001, permutation test; ag = 0.008).
Thresholds in the single-still-frame and 500-ms preview
conditions were not significantly different (p = 0.823).

Discussion

By measuring separation threshold, rather than task
performance on the temporal-order prediction task,
Experiment 2 allowed us to focus more closely on the
development of detailed representations over time and
how they changed as a function of road type. In
addition, the use of a large display in a laboratory
setting allowed us to create an immersive environment
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and more closely approximate on-road visual infor-
mation. We replicated the effect of duration in
Experiment 1, showing that subjects’ performance
improved as duration increased. In addition, our
findings clarify the results of Experiment 1, indicating
that the fundamental difference between highway and
urban driving environments persists, irrespective of
motion or viewing duration. In particular, the differ-
ences between the 500-ms still-image condition and the
2,500-ms preview-duration condition, as well as be-
tween the 500- and 2,500-ms preview-duration condi-
tions, suggest—consistent with Experiment 1—that
additional video is remarkably useful to our subjects in
predicting what comes next in these scenes. However,
the lack of a difference between the 500-ms still-image
and 500-ms preview-duration conditions suggests that
any motion information in the videos may need to be
integrated over more than 500 ms to provide a benefit
over what subjects can ascertain from still images.
While our results indicate that drivers are able to
perceive and predict the driving environment with brief
views, the critical result is that it is significantly more
difficult for them to do so in a highway than an urban
environment. Across both road types, increasing the
preview duration yielded a mean improvement of 307
ms in frame-separation thresholds, but the overall
difference in thresholds between road types was
somewhat smaller, at 223 ms. Critically, this improve-
ment in frame-separation thresholds suggests that when
more information is available (from longer videos), the
representation of the scene is more detailed and our
subjects are able to perform a harder discrimination
task. Together, they suggest that considering the
environment drivers need to predict is critically
important when estimating how long they will require
to do so.

General discussion

We undertook this study as a step towards answering
the question of how rapidly drivers can develop basic
representations of their operating environment by
assessing these representations based on subjects’
ability to make predictions concerning the temporal
sequence of natural scenes. While similar questions
have long been the focus of extensive theory and
research in driving, under the broad theoretical
umbrella of situation awareness, we sought to better
understand the time course on which these representa-
tions develop in the absence of a specific focus (e.g.,
hazard detection or avoidance), using a vision-science
approach and drawing inspiration from work on scene
gist.
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Across two experiments, we found that subjects
could develop adequately detailed representations of
driving environments from brief clips of road video,
and that they could accurately predict time-dependent
aspects of the scene with less than a second of video.
We found that longer viewing durations facilitated
this prediction, and that making the prediction task
easier (by increasing temporal separation between the
test frames) had a significant effect on subjects’
prediction performance. While our results indicate
that longer durations facilitate subjects’ representa-
tions of the scenes and improve performance on the
task, our critical finding on duration is that subjects
can acquire sufficient information to accurately
predict the scene very quickly. That subjects can make
better-than-chance predictions that improve as a
function of preview duration suggests that they are
quickly constructing a mental representation suffi-
cient for the task, and their representation likely
becomes more detailed with the availability of any
additional information. We also found that the
environment had a significant impact, and we
performed a second experiment to examine this result
in more detail. We found that, across all viewing
durations, subjects required an easier task (larger
temporal separation between still frames, hence
greater discriminability) to maintain the same level of
prediction performance for highway scenes than for
urban scenes, suggesting that the viewing duration
required would also be a function of environment and
not a constant across all possible driving environ-
ments. One caveat to our work is that all of our
subjects were young, and that perceptual processes
and driving behaviors are known to degrade with age
(Owsley, 2011). Future work examining performance
in older populations would provide a more complete
picture of how representation and prediction change
across the life span.

Considering the difference between highway and
urban environments, we would suggest that highway
scenes are often comparatively visually impoverished,
by virtue of their physical separation from other
structures. Therefore, the built features of the envi-
ronment must be taken into account when considering
drivers’ ability to represent their environment. At-
tempting to perceive the motion of other vehicles at
speed in a comparatively sparse highway environment
is significantly more difficult than doing so with a more
densely populated scene, as in our urban driving
stimuli. In urban settings, the greater availability of
objects throughout the scene (e.g., parked vehicles,
cyclists, pedestrians, buildings, signs) makes aspects of
the task of understanding the scene itself—a necessary
precondition for performing the temporal-order pre-
diction task—much easier. The more information in the
scene, the easier it is for the driver to understand which
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objects are moving, which are not, and whether they
are moving towards or away from the driver. This idea
echoes the work of Blittler and colleagues, who have
found that representational momentum is affected by
the content of the scene as well as the subjects’ own
expertise with the scene (Bléttler et al., 2011, 2012;
Blittler et al., 2010).

Our results suggest that drivers may acquire
sufficient information to predict aspects of their
proximate environment relatively quickly, suggesting
that they may not need to attend to individual objects
in the scene to be able to reasonably predict future
frame-level changes (in contrast to the prevailing view
of search and attention in driving; Ranney, 1994;
Theeuwes, 1994). Although additional work is needed,
our results may speak to the difference between the
simple information drivers require for a split-second
response and the more detailed information they
require for situation awareness. While forthcoming
changes in natural scenes can be predicted from still
images, as shown in the representational-momentum
literature (Freyd, 1983; Freyd & Finke, 1984), this
requires longer viewing durations than acquiring the
gist of a scene (which takes less than 100 ms; Greene &
Oliva, 2009), although this work does not examine how
well these changes can be predicted.

One might ask why driver perception still matters in
an era when cars can, to varying extents, drive
themselves. Automated vehicles are classified according
to their capabilities into five levels of automation,
moving from minimal to total autonomy (SAE
International, 2018). A fully automated vehicle (often
called a Level 5 vehicle) does not require a driver at all,
and renders the focus of this article irrelevant.
However, Level 5 vehicles are unlikely to be available
any time soon. Lower levels of vehicular automation
(Levels 1 through 3, and perhaps Level 4 in emergency
conditions) assume that the driver still has a role in the
safe operation of the vehicle and, critically, assume the
driver will be paying attention and be able to take control
under some circumstances—or at least is capable of
doing so when required. However, there is no guarantee
that the driver of an automated vehicle will treat a low-
level, less capable, automated vehicle with the appro-
priate amount of caution; for example, a Level 2 system
(e.g., Tesla Autopilot, Volvo Pilot Assist, GM Super
Cruise, and other similar systems) assumes that the
driver is always paying sufficient attention to be able to
reassert control over the vehicle when needed. As a
consequence, we must consider how the driver’s visual
system allows them to make the predictions necessary
for action and, in particular, how quickly this can be
accomplished.

Considering our results in the context of handoffs in
automated-vehicle control between the vehicle and
driver, our results on road type and minimum duration
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for prediction have important implications. Some
automated-vehicle systems are likely to be used on
highways, where the environment is more comprehen-
sible for the vehicles’ automated perception and control
systems. However, the same environment that helps the
vehicle may also hinder the driver in an exchange of
control. Our results suggest that the driver of an
automated vehicle will take more time to adequately
represent their environment, make predictions, and
respond appropriately on a highway, where visual
localization cues are reduced. For automated vehicles
to be safe, they must be designed to account for the
limitations of human perception relative to the
capabilities and limitations of the vehicle.

To conclude, we believe that our results help to
answer an outstanding question in visual perception
and representation in driving: How quickly can drivers
represent their environment in the absence of proxi-
mate hazards? Particularly in the context of automated
vehicles and exchanges of control between the vehicle
and the driver (Gold, Dambéck, Lorenz, & Bengler,
2013; Samuel, Borowsky, Zilberstein, & Fisher, 2016;
Samuel & Fisher, 2015; Zeeb, Buchner, & Schrauf,
2016), it is essential that we know how the driver’s
visual system constrains the process, and the influence
of environment on the speed with which the driver can
take control. While the capabilities of the driver limit
what we should expect them to do in different types of
handoff situations, our results contrast with the
assumption that “sub-second viewing times are prob-
ably too short for processing dynamic traffic scenes”
(Lu et al., 2017, p. 294). It is likely that the driver’s
peripheral vision (Wolfe, Dobres, Rosenholtz, &
Reimer, 2017) is a major contributor to their ability to
quickly represent their environment, and that serial
search for objects in the scene, while occasionally
necessary, may not be a component of general
representation without a specific task. Automated
systems may need to be designed with the awareness
that the driver is remarkably capable of representing
the immediate future with only a brief glimpse of the
road; however, a single glimpse may not be enough to
make them a safe driver, or to enable a safe takeover.
However, since this work was done in the laboratory
(and on Mechanical Turk), the degree to which our
results extend to actual driving conditions and behavior
is unknown. Future work—particularly on-road ex-
periments and naturalistic observation studies focused
on particular settings, tasks, and age groups—may shed
more light on how drivers acquire the information they
need and how it affects their behavior in handoff
situations.

Keywords: driving, scene perception, prediction, visual
attention
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