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Abstract 

Readability is on the cusp of a revolution. Fixed text is becoming fluid as a proliferation 

of digital reading devices rewrite what a document can do. As past constraints make 

way for more flexible opportunities, there is great need to understand how reading 

formats can be tuned to the situation and the individual. We aim to provide a firm 

foundation for readability research, a comprehensive framework for modern, multi-

disciplinary readability research. Readability refers to aspects of visual information 

design which impact information flow from the page to the reader. Readability can be 

enhanced by changes to the set of typographical characteristics of a text. These 

aspects can be modified on-demand, instantly improving the ease with which a reader 

can process and derive meaning from text. We call on a multi-disciplinary research 

community to take up these challenges to elevate reading outcomes and provide the 

tools to do so effectively.  
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Figure 1. Readability is aspects of visual information design which impact information flow from the page 

to the reader. It can be enhanced, for example by targeted changes to typographical characteristics, or to 

content. A growing group of researchers are working to understand how and why these changes help. 



 

 

 

1. Introduction 

 
Figure 2.  Digital technologies allow dynamic, adaptive reader control of font size, font choice, screen 

polarity, spacing, and content itself, aspects traditionally controlled by the publisher. New digital 

technology enables such changes on-demand, instantly enhancing individual readability. 

 

Readability (Fig. 1) is a growing focus because reading has fundamentally changed (Fig. 2).  

The amount of reading content available today is more than has ever existed, and it grows at an 

ever-increasing rate.  The pressure to ingest vast quantities of information quickly has never 

been greater.  Additionally, reading content is distributed across highly variable publishing 

platforms, which has changed what and how we read. The wider commercialization of 

smartphones, e-books, and lightweight laptops over the last 15 years have diversified where 

and when we read. Now more than ever, improving the modern reading experience has 

enormous practical and societal significance. 

 

Modern reading is digital, and this has introduced a fundamental paradigm shift. To date, 

authors, publishers, and designers have been in control of the reading experience. This is no 

longer the case as evidenced by the multitude of device types, screen qualities, and software 

settings available to the reader.  Depending on the technologies we use, we - the readers - can 

gain control over font size, screen polarity, spacing, font choice, and other formatting choices. 

Amazon’s Kindle, Apple’s iBooks, Microsoft’s Immersive Reader, Adobe’s Liquid Mode, and 

modern web browsers all provide some of these controls. Because our devices are always with 

us, we now grab bits of reading here and there (Wolf, 2018): some of us check social media, 

others their news feeds, and still others their ebooks, news apps, or PDFs for class or the next 

meeting. Increasingly, we read in interludes, and with frequent interruptions, a considerably 

different form of reading than sitting down at length with a novel or newspaper. Existing 

research on reading has concentrated on fixed-format pages - either books or electronic 

https://www.zotero.org/google-docs/?aA7aKY


 

 

 

facsimiles of books like PDFs. Recent studies indicate that we may be on the cusp of 

dramatically changing the way people read - making it much easier for struggling readers to 

read and for good readers to read even more efficiently by changing and, more significantly, 

personalizing the readability of the text. Indeed, the authors have seen children, both good and 

struggling readers, become more fluent with customized text formats (Crowley & Jordan, 2019a; 

Crowley & Jordan, 2019b) and adult readers add as much as 10 pages an hour when optimizing 

digital text for personalized reading (Wallace et al., 2020a; Wallace et al., 2020b).  

 

Readability encapsulates those properties of a document that determine the ease and success 

with which individual readers decipher, process, and make meaning of the text read. While this 

may involve aspects of the document’s content, structure, or layout more generally, our focus in 

this paper is on the typographical features of the text, which includes font choice, size, spacing, 

and related attributes. Many of the methods discussed here may nevertheless apply to studies 

of document readability more generally. By moving away from printed, and therefore fixed, text, 

readability is being fundamentally changed by digital text and the customization options that 

come with it. Readers - young and old, proficient and struggling - all stand to benefit immensely 

from having control over the format of the text that they read. Rather than a one-size-fits all, 

there is an opportunity to individuate for the reader and the reading context. 

 

This new direction is a green field and needs new methodologies, tools, and approaches. The 

authors have been building these tools and methods over the last few years and will use this 

paper to share them with the greater interdisciplinary research community. In this pivotal 

moment, the future of readability is in the hands of a small group of present-day stakeholders. 

This paper is intended as a practical foundational resource for growing the readability 

stakeholder community. The subject matter requires an integrated interdisciplinary approach, 

and correspondingly, the authors of this paper include vision scientists, technology experts, 

educators, designers, typographers, and data scientists; together, we represent voices from 

academia, tech industry, and non-profit institutions.  

 

This paper is written for anyone interested in pushing the state of readability research: 

scientists, practitioners, educators, tech companies, type designers, policymakers, and 

engineers. Our goal is to share our methods and tools with the greater community in hopes that 

together we can advance the state of the research and make readability better for all. 

 

 

 

 



 

 

 

2. Reading & Readability 

 
Figure 3. Reading is something that humans do, while readability is a property of the document we read. 

 

The Oxford English Dictionary defines readability as “the quality of being legible or 

decipherable”. Readability (See Fig. 3) is informed by content, typographical features, and 

document-level aspects, among other unexplored properties. A change to the document’s 

readability affects the ease with which a reader can succeed at extracting the information they 

need. Optimal readability entails a fit between document, reader, and context, producing better 

reading outcomes.  

 

By focusing on the presentation and legibility of text, readability research is thereby intertwined 

with the act of reading itself. It is essential for readability researchers to understand the core 

tenets of the process of reading and how these two research fields interact. As readability is a 

narrower and less studied topic than reading, we will occasionally borrow methodology from 

more general reading studies throughout this paper. 

 

Reading is inherently a social action. We are not born knowing how to read, and we must 

continue to read to make sense of the world around us. Reading includes the acts of 

deciphering, processing, and making meaning of text and may look very different depending on 

when, how, and why we are reading. Considering reading, and by extension readability, means 

considering everything from how text is presented to the physical process of reading to the 



 

 

 

strategies that readers use while reading and how those strategies change based on readers’ 

task and motivation.  

2.1. Types of reading 

 
 

Figure 4. In glanceable reading, reading is not the primary task, and undue attention on reading is 

detrimental.  In long form reading, reading is the primary task, and undue attention on other tasks is 

detrimental to reading.  Interlude reading subtenants the complex space between, in which reading is one 

of many interleaved tasks. 

 

Reading can encompass encountering a single word as we move through the world, like “stop” 

on a sign to engaging in more complex tasks like reading an instruction manual for assembling 

a new piece of furniture sentence-by-sentence, pausing as we complete each step along the 

way. Finally, reading can extend to ingesting large amounts of text in a single, uninterrupted 

pass for pleasure or knowledge. All of these reading activities, therefore, occur on two axes of 

intention: time commitment and purpose on the part of the reader (Fig. 4); that is, they cannot 

be thought of as only the simple process of deciphering text. As we consider how we design and 

distribute text for readability, it is valuable for us to distinguish even further these ways that 

people read so that we are clear about how our design goals might align readability with 

intentions for reading. 

 

 

 



 

 

 

2.1.1 Reading on the Temporal Axis 

 

We can consider reading to be a process that the reader does over time, with scanning or 

searching a body of text (or an interface) for a given word at one end of the reading task space. 

In this kind of glanceable reading (a single fixation on a single word, see Sawyer et al., 2020), 

a reader is reading only that one word they are looking for, rather than reading or paying 

attention to the interstitial text. This is the type of reading that is involved when processing the 

alerts on smart watches, or similar small-screen devices, or during driving, noticing the text on 

road signs.  

 

Directed or guided search behavior might, then, lead to skimming the content of the document 

to gain context. The reader might be skimming a text to determine whether the section they are 

in or the document as a whole are useful to them. These skimming and searching behaviors can 

be considered a form of interlude reading (Wallace et al., 2020; 2020a), where readers read 

up to multiple sentences or a shorter part of a longer document. This is also the type of reading 

we engage in when browsing short snippets of news articles, headlines, or social media posts. 

 

Moving to more in-depth reading, a reader who requires a more complete understanding will 

read most, if not all, words and will move progressively through a document, reading for 

comprehension and, potentially, for deeper meaning. According to Wolf (2016), we can define 

“deep reading” as reading processes, which:  

 

“underlie our abilities to find, reflect, and potentially expand upon what matters when we 

read. They represent the full sum of the cognitive, perceptual, and affective processes 

that prepare readers to apprehend, grasp, and assimilate the essence of what is read” 

(p. 112). 

 

Deeper reading acts, such as what Wolf describes, will inherently require engaging in long-

form reading (Seaboyer & Barnett, 2019), where paragraphs and pages are focused on without 

interruption. The reading of academic articles, textbooks, technical manuals, and legal 

documents all fall into this category. 

 

2.1.2 Reading on the Purpose Axis  

 

Considering reading from the point of view of what the reader needs brings us to reading 

beyond basic literacy and to the question of reading strategies and motivations. Commonly, 

when we think about supporting readers, we think first about basic literacy acquisition: how do 

we help learners sound out letters and process phonemes? This is an important first step, of 

course, but an ability to read goes beyond basic literacy acquisition. Literacy, in other words, 

does not just describe an ability to recognize visual patterns in language and make meaning of 

them, but rather to apply that visual knowledge to social and cultural meaning-making. Such 

reading acts include: 

 



 

 

 

1. When we read for content uptake, we are going beyond decoded information to learn 

about processes, key terms, concepts, or definitions. We might read for content uptake 

when we are trying to learn a new term, skill, or idea. For instance, a home cook will 

read a recipe for content uptake to make a meal (Wolf 2016). 

2. When we read rhetorically, we are reading for an understanding about the context of the 

written work itself, its purpose and audience, and what it seeks to communicate. For 

example, being a critical consumer of news and social media posts requires rhetorical 

reading, and schools, particularly middle and high schools, have been encouraged to 

teach these reading skills directly so that students are prepared to be informed 

consumers of such media (Sweeney 2018, Brandt 1990, Haas and Flower 1988). 

3. When we read for research, we are reading to collect ideas to create and support a 

larger body of knowledge, often aggregating a variety of perspectives and extrapolating 

themes, patterns, and ideas. A financial analyst seeking to make a prediction will engage 

in this type of reading (Jamieson 2013, Downs 2010, Bizup 2008). 

4. When we read for analysis, we are reading to consider broader themes, ideas, or 

patterns. Often referred to as “close reading” in areas of literary study, reading for 

analysis involves examining readings at the word, sentence, and/or paragraph-level to 

make sense of how a piece of reading might fit into broader cultural or historical 

narratives. This type of reading is done most frequently by students of all ages and 

scholars in history and literary studies (Fang 2016, Fisher and Frey 2014). 

 

These purposes for reading then depend on a variety of reading strategies (Carillo 2017, 

Petrosky and Bartholomae 2010). Reading for content uptake, for example, requires strategies 

related to information retrieval, summarization, and, depending on the goal of the reading act 

itself, memorization. Reading for analysis, on the other hand, may require strategies related to 

critical thinking and text contextualization or historicization and an ability to think and imagine 

meanings beyond the literal space of the text itself. Explicating the many reading strategies for 

approaching multiple ways of reading has been the topic of many textbooks and scholarly 

publications. 

 

Ultimately, while much can be learned about readability by studying how we read as a temporal 

process, a vast amount is missed when the question of reading purpose and strategy is not also 

considered. Consider the reader: Is the length or type of material they are reading implicitly 

asking them to employ certain strategies? Is the timing of the study supportive of the reading 

purpose inherent in the task? Is the presentation of the material appropriate to employing the 

right strategies? Ultimately, how might these factors interact with our reader’s observable 

behavior, and what might be lost by not considering them? This brings us to the next section, 

where we focus on the reader. 

 

 



 

 

 

3. The Readers 

 

 
Figure 5. There are no outlier populations in readability; rather, this work addresses a continuum of need 

and a continuum of skill, in which each individual could be provided with affordances. 

 

Readability research is first and foremost about the readers - it asks questions about the ease 

with which a reader can successfully decode the document (i.e., decipher, process, and make 

meaning of the text read). Researchers interested in particular populations (e.g., children, 

elderly, those with visual impairments, financial workers, cyber defenders, readers with dyslexia) 

should bear in mind each group’s needs and abilities, whether that is in the context of 

compensation (and motivation), fatigue, or their ability to do the task of interest. In this section, 

we discuss how to design a readability study with the attributes and constraints of the target 

reader population in mind, as well as considerations that apply in different settings, for example, 

running the study in the lab or in the wild.  We conclude this section with a discussion of the 

foundational ethical research principles that apply to working with human participants in any 

study. These include the need for participants to be part of the study willingly, for their privacy to 

be respected, and for the benefits of the research to be commensurate with the risks involved.  

3.1. “Who” are the readers 

Readability affects any literate or nearly literate child or adult and spans multiple expertise 

domains. This means that nearly any reader can help us understand how they read and how 

they might read more easily and more completely by acting as a participant in reading studies.  

 

Struggling readers. In our view, there are no outlier populations; rather, participants should be 

seen as lying on a continuum of need and on a continuum of skill (Shaywitz & Shaywitz, 2020).  



 

 

 

Nonetheless, psychology and many other disciplines focus upon deficits, and indeed 

investigating reading in people who struggle with reading can help us understand the cognitive, 

linguistic, and environmental factors that influence how we read, which could in turn affect 

readability. One population of particular interest to many reading researchers is individuals with 

developmental dyslexia. Given the complex nature of reading that involves the visual, 

phonological, and semantic processing of the reading materials, it is increasingly clear that 

dyslexia is a multifactorial condition (Pennington, 2006; Ramus et al. 2003; Vellutino et al. 

2004). One of the most popular theories is the phonological impairment theory of dyslexia. 

However, the extent to which phonological awareness specifically contributes to reading deficits 

is still debated (Catts et al., 2017; Fostick & Revah, 2018). Similarly, whether dyslexic readers 

have elevated visual crowding or poor motion sensitivity compared to non-dyslexic readers is 

also not fully understood (e.g. Joo et al., 2018; Demb et al., 1995; Olulade et al., 2013; Martelli 

et al. 2009). Regardless, studying this population has helped us understand how visual, 

phonological, and semantic processing contributes to reading, which will help us understand 

how to improve readability for all readers. Another population that can help us understand 

readability more deeply are non-native speakers who may have deficits in oral language and 

reading comprehension skills, despite adequate decoding capabilities (Spencer M. & Wagner 

W. 2017).  

 

Aging readers. People with declining reading skills may similarly appreciate improvements to 

their reading experience to compensate for the loss of visual acuity (e.g., age-related 

presbyopia), declining cognitive ability (Bokulich et al., 2016; Owsley, 2011), and changes to 

other sensory capabilities such as crowding and visual span (Rayner et al. 2010; Legge et al., 

2007; Levi, 2008). Reading speed is known to slow down with age (after age 40), while reading 

acuity decreases and, as a result, critical print size increases (Calabrèse et al., 2016). 

Interestingly, beyond population-level opportunities, individuated font and other typographical 

characteristics of a text can likewise drive increases in readability (Wallace et al., 2020; 2020a). 

 

Readers learning to read.  Populations who are in the thick of learning to read can also benefit 

from reading interventions (Powell & Trice, 2020; Reid et al., 2004; Hughes & Wilkins, 2002) 

including older readers not fully proficient in early literacy skills such as letter knowledge and 

print awareness (e.g., adult literacy learners) (Graesser et al., 2019; Sabatini et al, 2011). In 

particular, the learning-to-read population of young children roughly between the ages of 3-7 

has not been very well studied in the context of readability and its effects on the formation of 

sound-letter understanding. An increased understanding of how readability impacts this critical 

learning process has the potential for great impact, as research has shown that when students 

are not proficient readers by fourth grade, they are far less likely to complete high school with 

serious consequences for economic and civic prospects for the remainder of their lives (Cramer 

et al., 2014; Hernandez & Napierala, 2013).  

 

Knowledge workers. Other points on the continuums of need and skill are the knowledge 

workers—including medical experts leafing through patient records (Nygren et al., 1992; van 

Engen-Verheul et al., 2016; Bouaud & Séroussi et al., 1996; Elson & Connelly, 1995; Henriksen 

et al., 2020), cybersecurity experts scrutinizing immense amounts of text content for potential 



 

 

 

threats (Lotem  et al., 2012; Macy et al., 2014; Lee et al., 2019; Ehrlich et al., 2017; Jang-

Jaccard & Nepal, 2014), financial analysts integrating information from various sources for 

making predictions (Lehavy et al., 2011; Li, 2010; Loughran & McDonald, 2010; Ravula, 2021; 

Hoitash et al., 2021; Bradshaw, 2011), and scientists immersing themselves in academic 

reading to stay up to date (Eung et al., 2018). These populations of heavy readers have the 

potential of experiencing immense career benefits from tools that improve the throughput or 

quality of their reading. 

 

The “general” reader. Readers in a population span a myriad continua of need and skill, and 

perform the task of reading in a multitude of contexts. The ‘general’ reader can therefore be 

seen as the reader that reads regularly for pleasure - e-mails, social media feeds, news, interest 

articles, blogs, etc. - and is frequently engaged in interlude reading of a few sentences or 

paragraphs at a time. Among the readers without any specifically diagnosed reading or learning 

difficulties, we still encounter a wide range of reading speeds and abilities, from less-versed 

readers reading below 180 WPM to speed readers capable of speeds up to 750 WPM (Rayner, 

2016). It is often assumed that average adult readers read between 200 and 250 words per 

minute. A study by Brysbaert 2019) found that the average silent reading rate for adults in 

English is 238 words per minute for non-fiction and 260 for fiction. Moreover, however, it is 

advantageous to focus studies of readability to a particular population, and perhaps refine 

further by a particular context. 

 

Researchers, engineers, designers, and others interested in developing tools for improving 

readability need to study reading across many populations, by considering diversity in age, 

reading skill level, pre-existing deficits, and other participant characteristics. This will help 

develop individualized recommendations as well as a better understanding of the wide variety of 

readability factors that affect some individuals but not others. From a study design perspective, 

different populations require different considerations. For instance, children, elderly adults, 

individuals with reading, cognitive, language, or neurological disorders may fare better under 

shorter study sessions. In such cases, multiple short data collection sessions rather than a 

single long session can often yield better quality data (see Section 6).  

 

Once a population of interest has been identified, attention must be paid to population features 

that may influence experimental results if not properly controlled. Aside from the commonplace 

factors of age, education level, and occupation, additional sources of variability can result from 

whether vision correction is used (and whether it is used during the study), the participant’s 

reading proficiency (e.g., reading level), prior diagnoses of reading or learning disabilities, any 

eye conditions (e.g., cataracts, glaucoma, retinal degradation), possible influences of stimulants 

or depressants (including common ones like nicotine and caffeine), other languages 

spoken/read by the participant, lighting conditions, and reading environment at time of study, 

etc. These features can be tracked with study surveys (either as a pre-screen or post-

completion questionnaire) and then used either for participant filtering or incorporated as factors 

in the analysis. Since there are many potential factors to take into account here, and only some 

will apply to any given population or study, we provide a sample demographic survey in the 

appendix to this article as a starting point.  



 

 

 

3.2. “How much” population data is enough 

With the particular population of readers pinned down, the researcher will next need to decide 

how many readers to recruit for a given readability study. Of course, the degree to which 

researchers can generalize from their data is a function of both the population and the question; 

no one size fits all situations.  

 

Size matters. Size depends not just on the raw number of participants, but also on the number 

of trials per participant, the total amount of data gathered, and the diversity of the participant 

pool - in its ability to act as a representative sample of the target population. A good way to think 

about this is not “how many participants” but how many “experimental units” are available for 

downstream analysis. For instance, it is not uncommon for behavioral/neuroscience studies to 

derive conclusions from studies of one or two dozen participants (Sihoe, 2015). Data from such 

“low-N” studies needs to be very high quality, with possible confounding factors identified and 

controlled for, and many trials run per participant to ensure the trends captured are 

representative of an underlying truth, and not simply of spurious factors; confounds in design, 

outliers in the population measured, unforeseen external factors, and so on... On the contrary, 

when running large-scale studies of hundreds or thousands of participants, on crowdsourcing 

platforms for instance, a large N can help wash out individual participant noise (Bolthausen & 

Wüthrich, 2013). The right N depends in part on the key study questions - i.e. the metrics used, 

practical significance level desired, statistical power (Lan & de Mets, 1994; Per Broberg, 2013), 

number of variables in the experiment, and the nature of variables and experimental design. 

Prior readability studies (Banerjee et al. 2011; Bernard et al., 2001; Boyarski 1998) have made 

general recommendations on the basis of dozens of participants’ worth of data, but these 

recommendations can change dramatically as the number of participants is increased by an 

order of magnitude (Wallace et al., 2020b). 

 

Individuals matter too. For painting a picture of the variability inherent to a population, or with 

a focus on individuation, fewer participants is an acceptable starting point. In this case, the 

benefit of large numbers is to contextualize the behavior of the few - are they representative of 

participant clusters, or outliers in the data? So while size matters, zooming in on individual 

participants can help paint the stories of real impact and change (Crowley & Jordan, 2019). 

Indeed, recent work on individuation in readability suggests that significant gains are available 

by looking beyond measure of central tendency, and to clustering and individual differences 

approaches (see Wallace et al, 2020, 2020a). 

3.3. “How” to recruit 

First and foremost, treat participants ethically. Recruiting participants is a big challenge for 

capturing an accurate sample of high-quality, real-world data, and it is essential that researchers 

treat participants respectfully and ethically. As a result, participants should be given multiple 

opportunities to consent, and the researchers must clearly explain any risks so the potential 

participant can make an informed decision. If research is done unethically, it can put participants 



 

 

 

at risk and damage the trust between researchers and participants more generally (see also 

Section 3.5). 

 

Partner with a domain expert. Working with a domain expert can simultaneously simplify the 

recruiting process and provide important insights into the attributes and limitations of the target 

population. For example, partnering with a school district, individual educator, or third-party 

reading organization can provide (i) access to student populations, (ii) requirements of working 

with minors (e.g., participant assent, parent permission slips; more details in Section 3.5), and 

(iii) guidance for tailoring the directions, tasks, and content of a study to the appropriate 

comprehension level (e.g., depending on the presence or absence of an adult supervisor or 

teacher). One can approach organizations that directly work with adults developing literacy skills 

or second language learners (e.g., libraries, community-based organizations, and federally-

funded adult learning programs). Additionally, networks of these adult learning organizations 

might be found through larger nonprofit organizations like World Education, Inc., ProLiteracy, 

and COABE. One can also approach organizations that support K-12 students and educators 

(e.g., curriculum providers and after-school programs). 

 

Consider the advantages and downsides of crowdsourcing platforms. If it makes sense for 

the study question to consider an easy-to-recruit sample of the general population, 

crowdsourcing platforms like Amazon’s Mechanical Turk, UserTesting.com, Crowdflower, and 

Prolific are available (Buhrmester, et al. 2016; Paolacci & Chandler, 2014; Peer et al. 2017). 

These platforms provide a wide range of readily available users motivated extrinsically through 

monetary compensation. Other models such as friend-sourcing are where someone relies on 

recruiting their friends to participate voluntarily, which could significantly bias results but provide 

an easy platform for pilot testing experiments. A cheaper alternative to paid crowdsourcing that 

still provides some of its benefits is relying on volunteers. LabInTheWild, for example, is a 

citizen science platform that has been able to tap into users' intrinsic and altruistic motivations to 

recruit thousands of users to perform various studies (Reinecke et al. 2015), including a reading 

study that showed that a special “Reader View” in web browsers could increase reading speeds 

and improve the perceived readability and visual appeal of the text (Li et al, 2019). By providing 

users insights on how they compare with others in terms of reading speed, preference, and 

other reading tasks, participants are motivated to share the studies with others and to return for 

additional studies.  

 

Special populations can also be recruited via targeted messages in relevant forums such as 

Reddit (Shatz, 2017) or by advertising in social media or markets like Craigslist (Alto et al. 

2018). The relevant considerations in all these cases are the potential for self-selection (e.g., 

participants who are more likely to volunteer for a reading experiment may not be representative 

of all readers) and the impacts of incentives on performance (Mason et al. 2010; Morris et al. 

2010; Ho et al. 2015; Morris et al. 2017). Our own experience is that having a diverse research 

team representing different spheres (e.g., scientists, educators, technologists, designers) can 

help with participant recruiting and designing a study with greater awareness of the attributes 

and limitations of the target population (e.g., their interests, prior knowledge, attention span, 

available resources, as well as physiological, psychological, and social constraints). 



 

 

 

3.4. “Where” to conduct studies 

Tightly intertwined with the choice of target population are considerations about where the 

readability study may take place. While the features of the population may provide constraints 

for the study location, often the experimenter is still faced with a number of choices (e.g., 

whether to conduct a study on adult readers in a controlled in-lab environment or online; 

whether to conduct a study on children in the classroom or the home, etc.). Each choice of 

location correspondingly involves trade-offs between ease of recruiting, data quality, and 

ecological validity of the reading environment.  

3.4.1. Laboratory-based in-person studies 

 

An important consideration for choosing where to conduct a study is the obtainability, 

accessibility, representativeness, and reliability of the participant data. From this perspective, in-

person, lab studies offer the highest degree of control and access to participant reading data. 

Moreover, the experimenter has the option of taking physiological recordings of the participants 

while they read - via eye trackers, brain imaging technology, or other sensors that can be set up 

and carefully calibrated for each participant (see Section 5).  For fundamental questions in 

readability, including many questions about the visual mechanics of reading (how readers move 

their eyes and why, depending on task, goal, experience, and strategy), laboratory studies are 

extremely revealing. However, there is always the tension between results from laboratory 

studies and ecological validity - i.e., the behavior that readers engage in outside the laboratory. 

After all, research labs involve performing unfamiliar tasks in unfamiliar settings for most 

participants. While some of these gaps can be overcome by replicating study designs outside 

the laboratory, or by developing and using more naturalistic tasks in the laboratory, this gap will 

always exist, and minimizing it is a function of developing fundamentally generalizable tasks that 

reveal the underlying mechanics and processes of reading, where those findings can be applied 

to behavior outside the lab. 

 

3.4.2. Remote studies online 

 

The main advantages of conducting remote studies - e.g., studies hosted online on 

crowdsourcing platforms - are the ease, speed, and available quantity of participants. In 

particular, the numbers of participants available online can be substantially higher than those 

that are able to come in for in-person studies. As discussed in Section 3.1, a larger sample size 

can produce a more robust statistical distribution and easier-to-spot outliers. While remote 

studies can increase the diversity of the participant pool, by not being geographically limited, it is 

important to realize that these platforms self-select for participants who own a computer or 

phone and volunteer to participate in such studies. With society's migration to working remotely 

instead of in-person due to an ever-changing world, conducting remote studies is also growing 

in prevalence and acceptability.  



 

 

 

 

Beware of unobserved reading behavior. When using measurements captured from the 

reading behavior of online participants, or in situations where the participant is otherwise not 

directly observed, there may be numerous variables that could impact the readings, including 

distraction or multitasking (Ophir et al., 2009; Reeves et al., 2020), task switching, or “short-

cutting” activities like taking screenshots to facilitate comprehension or memorization tasks. 

While crowdsourced data from voluntary participants in their homes heavily increases the 

obtainability of the data, such data must be handled with care and analyzed for anomalies that 

should be reported and justified as exclusions during analysis (Section 7.2). This is because the 

data comes from experiments done at home with more uncontrollable variables, and 

participants may lack the necessary training to adjust for this accordingly.  

 

Capturing reading in-the-wild. While remote studies might lose some internal validity by giving 

up control of the reading environment, they gain ecological validity by studying participant 

reading habits in their natural environments, usually from the comfort of their homes. Recent 

work has introduced novel methods to control for participants’ environments in remote studies.  

One example is the “Virtual Chinrest”, a method that measures a participant’s viewing distance 

from the screen in the web browser (Li et al. 2020). Using the Virtual Chinrest, the researchers 

were reliably able to measure visual crowding in an otherwise uncontrolled online 

environment. Visual crowding depends on a precise calculation of visual angle and has been 

shown to affect people’s reading performance (Joo et al. 2018). This method provides a 

promising pathway to web-based reading studies that require precisely controlled stimulus. 

There has also been work on capturing eye movements remotely using web or cell phone 

cameras (Papoutsaki et al. 2017), allowing both for an additional measurement of observer 

behavior, but also providing validation of whether study participants complete the task honestly - 

i.e., actually moving their eyes to read the content on the screen instead of simply clicking 

through the task. To increase internal motivation for completing the studies, many researchers 

in other fields gamify their online studies or provide personalized feedback, leveraging the 

general growing interest in personal informatics and self-experimentation. Readability studies 

can similarly offer personalized font or reading format recommendations, motivating readers 

with possible improvements to the user experience or reading effectiveness (Wallace et al. 

2020).  

3.4.3. Remote studies in-context 

Another option for running studies outside of the laboratory is by partnering with organizations 

or professionals with access to specific reader populations, including school-age children or 

knowledge workers. Such studies can stand to benefit both from (1) external validity, by 

studying participants in their usual reading contexts and (2) control over, and reliability of, the 

data capture, since the collaborating organization or individuals may help administer the study 

and directly observe study participants. 

https://www.zotero.org/google-docs/?2uDzkQ


 

 

 

As a case in point, partnering with educators to conduct both small- and large-scale studies can 

be an effective method to evaluate the impact of readability on reading outcomes for learners 

of all ages. Teachers, and the learners themselves, can provide additional insights, quantitative 

and qualitative, which can assist in assessing impacts, and, like with remote studies, classroom 

studies gain external validity by studying participants’ reading habits in their natural 

environments. There are important ethical considerations with classroom-based research, 

which we discuss in Section 3.5. 

In professional contexts, one may choose to study populations from the military, healthcare, 

and financial institutions that engage in reading as part of their job (see also Section 3.1). In 

these cases, the corresponding readability study may leverage the reading materials that would 

be familiar to the study participants, provided there are no privacy or security risks. It is also 

important to consider potential risks related to either a readability study, or resulting 

recommendations, inadvertently interfering with the performance or accuracy of the 

professionals in their jobs.  

3.4.4. Remote studies on-the-go 

With the screens of mobile phones increasing in both size and resolution, reading has become 

much more attractive on these devices. Their pervasiveness allows users to engage in reading 

sessions while on-the-go, e.g., during the daily commute, in waiting situations, at home as well 

as at work. Unlike when reading on desktop computers, the context of mobile phones can 

widely vary in terms of environmental conditions (e.g., lighting or noise levels) and users’ 

primary or secondary activities (e.g., walking). Research by Liu (2005) has shown that reading 

on mobile devices has led to users engaging in rather brief reading sessions characterized by 

skimming behaviour as opposed to in-depth reading sessions. Oftentimes, the reading activity is 

not the primary user task as people interact with their phones while walking or during 

conversations. Such additional tasks introduce higher workload and, therefore, influence the 

reading performance (Schildbach, 2010). Designers can rarely rely on users’ undivided attention 

and also need to expect sudden interruptions to the reading task.  

 

Studies on-the-go strive to investigate realistic situations, in which users turn to their devices to 

read, as studying reading in naturalistic environments, as noted in Section 3.4.3, can greatly 

increase ecological validity. Contextual conditions are generally not controlled however, which 

makes interpretation of reading behaviour challenging. Insights into the context of particular 

reading sessions can be gained by collecting phone sensor data or using experience sampling 

(Van Berkel, 2017). Data collection frameworks, such as the AWARE framework (Ferreira, 

2015), combined with activity recognition algorithms (Krumm, 2010) allow investigators to make 

sense of the context of reading sessions on-the-go.  

 

Reading on-the-go can also be studied under controlled conditions by introducing secondary 

user tasks, such as walking. So-called in-motion scenarios are often more representative of 

mobile phone usage but require the conscious selection of specific evaluation methods. 

Consider the use of a controlled walking scenario, such as a pre-configured walking trail (for 



 

 

 

example, a figure-of-eight in confined spaces), or the use of a treadmill can recreate a realistic 

on-the-go scenario in the lab. Of course, a brief review of the literature can help the cautious 

researcher to avoid methods with undesired limitations: Barnard et al. (Barnard, 2005) found 

that treadmill walking allows experimenters to analyze reading performance aspects, but it is 

insufficient to identify contextual factors. For more realistic measures of performance, accuracy 

and workload, a walking scenario is preferable. Performing controlled studies in real-world 

scenarios can be challenging as studies by Kjeldskov and Stage (Kjeldskov, 2004) show: by 

comparing in-lab evaluations of mobile devices in comparison to real-world settings, they show 

that laboratory studies provide a good approximation for the user performance but often fail to 

capture the user’s additional workload realistically. Complex contexts are seldom well-

represented in simulations, and it is up to the researcher to determine how reading-on-the-go 

experimentation balances between practicality and safety on one side, and generalizability on 

the other. 

3.4.5. Replicating studies across environments 

Important questions for readability research include (1) to which extent reading behaviors 

replicate across different environments and (2) for the effects that don’t replicate, which factors 

drove those effects in the first place? With remote studies, we can reach larger numbers of 

people to understand individual differences. However, these results might compromise some 

internal validity in exchange for external validity. Rerunning the studies in controlled 

environments in a lab might tease apart which observations are reproducible across different 

environments. Replicating results from a remote environment in an in-lab environment will add 

the missing internal validity to remote studies. On the contrary, re-running laboratory studies 

with remote volunteers or paid crowdworkers can help researchers understand if the results 

they observe exist in more natural behavior or only in controlled laboratory settings. There is 

also utility in comparing results in and outside of the classroom. While teachers can provide 

qualitative observations of students' reading behaviors in class, how do the same students 

perform at home, with less teacher oversight and possibly increased distractions? Do the 

readability formats that work best in carefully controlled laboratory environments generalize to 

natural classroom environments, filled at times with distractions and interruptions?  

3.5. Oversight 

The question of research oversight is how we balance our desires as readability researchers, 

who want to collect data to better understand readability, with the rights of our participants. This 

oversight can take many forms and varies considerably (by setting and country), so we will 

discuss universal fundamentals of research oversight; that is, what any readability researcher 

must consider. While we might want to focus on the data that we need for a given study, it is 

also imperative that we consider our participants’ rights in the study and their rights regarding 

their data. We will use the following universal principles to frame this discussion: respect for 

persons, beneficence, and justice.  

 



 

 

 

Research with human participants must respect participants’ choices with regard to 

participation, data inclusion, data retention, and protect them from harm that might occur as part 

of the study or thereafter. This includes the question of anonymity and potential harms that 

might ensue if a participants’ data can be linked back to their identity. If, for example, an 

experiment involves a screening procedure for a disorder, and that data were made publicly 

accessible, it might cause harm to the participant. This is a particular concern with data that are 

difficult to truly anonymize, such as video or audio of participants. As researchers, it is our 

responsibility to ask our participants to provide informed consent before they participate and that 

this consent is based on their understanding of what they will be doing, the data they will 

generate, and what we will do with that data long-term.  

 

The principles of beneficence and justice in research make it imperative that we do our best to 

minimize potential harms and maximize the benefit of our research. That does not mean that a 

given participant must derive personal, immediate benefit from participating, but rather, by 

participating, they will help us increase our knowledge. This includes fundamental research - 

increasing our understanding of the basic mechanisms of reading will benefit society because it 

will help us improve the reading experience for all readers. Justice in a research context is the 

question of who bears the burdens and reaps the benefits; ethical research cannot only study 

one population and never return the fruits of that research to them. In readability research, it 

means that we must include a focus on disseminating our results and their implications. If our 

goal is to understand reading more completely to help everyone, and we use the products of our 

research to move towards that goal, we integrate the principle of justice. 

 

These are broad, bedrock principles for ethical research - each research environment, whether 

that is research in university settings with undergraduate students, in-classroom work with 

school-age students, in situ research with professionals, or online research has its own 

constraints and applicable regulation, and complying with them is the researcher’s duty and 

responsibility.  

 

Research in school-age settings where the participants are minors brings its own issues, 

including the need for parents to provide informed consent (while the minor participant provides 

assent) and the consent of the administration and other students - centering the principle we 

have discussed of respect for subjects and the idea of minimizing harm. It is also imperative in 

these settings to hold data confidential and anonymous because the risks are magnified with 

some populations and some data (particularly video or audio of children). In addition, the 

principles of beneficence and justice come into play here because researchers must balance 

the potential benefit of the data they collect with the potential harm that their disruption of the 

classroom may cause for other students. Critically, withholding an intervention in order to have a 

control group is not ethical if it adversely affects the control group’s expected educational 

experience. 

 

Considering a different example, online research, whether it is explicitly experimental (e.g., with 

crowdworkers) or manipulations integrated into a platform, service, or application, must reflect 

these same principles for ethical research. It is not enough to merely ask what might happen, 



 

 

 

manipulate a user’s experience of service and collect data on their behavior to increase profits. 

Research with participants or users needs to center the participants (or users) to reflect the 

need to respect them as people and as participants.  

 

On the whole, questions of oversight or research ethics should not be thought of as constraints 

to researchers in academic or private sector settings, but rather as a framework meant to keep 

everyone safe. Studying readability and focusing on improving reading is best done, we argue, 

by doing it ethically and carefully and realizing the greatest benefit for all readers, building trust 

and knowledge together. 

4. Reading Materials 

 
Figure 5. Typographic properties include the content, how it is presented, and how it is laid out. 

 

Inextricable from when, how, and why readers read is the question of what a reader is reading: 

the content, how it is presented, how it is laid out (i.e., typographic properties, Fig. 5) are key to 

whether the content or its presentation pose difficulties to the reader as they read.  

4.1. Content Curation and Leveling 

 

Reading material must be curated to be appropriate in topic, length, and level to the target study 

population. Familiarity with the topic and interest in it are possible confounding factors (Wallace, 



 

 

 

2020a), as both can affect the ease and speed with which the readers consume the content and 

whether they switch to a skimming reading mode. Length must also match the skills and abilities 

of the target population. Study fatigue or, worse, the inability to complete the study task can 

significantly affect a study’s conclusions. Genre is relevant for speed and comprehension, in 

that, for example, narrative texts tend to be easier for readers as they have a more familiar 

chronological organization (Hiebert et al., 2010). Texts must also meet target populations’ 

expectations for reading inoffensive topics so as not to distract and should not reflect bias or 

stereotypes about any group. For example, contentious topics may elicit reactance (Brehm, 

1966), which may prompt significant cognitive engagement with the material, affecting speed, 

comprehension, and emotional affect. Finally, the topic of the reading material also directly 

affects the level of the material, particularly in the vocabulary employed, and must be 

appropriately tailored to the target population. 

  

For assessing the level of a reading passage, the standard today is computer-based readability 

indexes. A readability index is a way of measuring the ease of comprehension of a piece of 

text (McCallum & Peterson, 1982). Educators traditionally designed formulas to calculate 

readability manually (McCallum & Peterson, 1982; G. Klare, 1976), but researchers have since 

introduced several methods of analyzing text with automatically-computed indexes. Some of the 

most common methods used today include: Flesch Kincaid Grade Level, Flesch Kincaid 

Reading Ease, Gunning Fog Index, SMOG Index, Coleman Liau Index, and the Automated 

Reading Index (Brigo et al., 2015; Mc Laughlin, 1969; Zhou et al., 2017). These invoke 

mathematical equations that use measures of word difficulty such as average word length and 

word frequency (e.g., Mean Log Word Frequency or MLWF), sentence length and syntactic 

consistency (e.g., Mean Sentence Length or MSL), and passage length (calculated using word 

counts, syllable counts, or character counts) to make predictions about the reading level of the 

passage. All these features of the text interact and cannot be viewed in isolation. For instance, 

different calculators vary in response to multisyllabic words, possessive nouns, symbol choice, 

and symbol pronunciation and syllable count. (Zhou et al., 2017). Readability calculators are 

generally reliable for ordering text into levels and predicting the rough difficulty of passages. 

Nevertheless, because they are not always consistent, leveling is usually carried out by 

considering multiple indexes simultaneously. Furthermore, some researchers advise that 

automatically-computed indices stop providing meaningful results at tenths of grade estimates 

(Zhou et al., 2017). Which indices should be used together is poorly understood and should be 

the focus of additional research. 

 

Despite the frequent use of readability indices for reporting text difficulty levels in studies across 

a broad range of domains (Agarwal et al., 2013; Loughran & McDonald, 2014), guidance on 

how to precisely match readers to different reading index levels is not generally available ( K. 

Olson, 2010), so we recommend consulting with an education expert on questions of 

appropriate content levels for a given target population. For example, for both K-12 students 

and adult literacy learners, the text they are reading should feel relevant to them, hold their 

interest, and be a good fit for their literacy proficiency. The instructors you partner with can help 

you determine appropriate text difficulty.  Additionally, adult learners need to know why they are 

engaged in the activity - especially if they are busy adults with families and jobs who struggle to 

https://www.zotero.org/google-docs/?broken=sItqRV
https://www.zotero.org/google-docs/?broken=jUWpd5
https://www.zotero.org/google-docs/?broken=mo925a
https://www.zotero.org/google-docs/?broken=P8l7RY
https://www.zotero.org/google-docs/?broken=BqWMWN
https://www.zotero.org/google-docs/?broken=jDdtBU


 

 

 

make time for learning. They will want to know why they are taking valuable class time for the 

activities and will be more engaged if they do (Knowles, 1970). 

 

Towards open-sourced reading materials. The presence of standardized reading corpora 

would both lower the barrier to running new readability studies and facilitate cross-study 

comparative analysis to move the field forward. Unfortunately, while some resources are 

available, they are scattered across communities and hard to come by. In the Appendix, we 

provide a list of current available reading corpora. 

 

4.2. Typographic Considerations 

 
In recent years, a growing number of interdisciplinary research groups involving both type 

designers and scientists have emerged. This, in combination with the possibilities for developing 

and controlling font stimuli with the variable font format, will open up new experimental settings 

where the font stimuli are much more controlled. 

 
When presenting content for reading, one must make decisions about the fonts, sizes, weights, 

colors, spacings, and other visual features of the presented text. When studying readability 

specifically, one may be comparing different text formats to each other. In these cases, methods 

may need to be employed to normalize the fonts and type settings. 

 

The following mantra has been used for font selection since the beginning of personal 

computing: script, language, category, (classification) typeface, font, glyph, size, color, column 

width, line spacing, and letter spacing. Each of these choices has an effect on reading. In 

addition, the presentation of these fonts will be influenced significantly by hardware and 

software used to present text for reading. 

4.2.1. Understanding Font Classifications  

 

There are several thousand written languages represented by close to a 100 modern scripts. 

Each of the scripts have implications for reading (Kessler and Treiman, 2015). In the Latin script 

taxonomy, categories like serif, sans-serif, handwriting, blackletter, etc. represent fonts based 

on their anatomical characteristics. Classifications are used to identify more specific anatomical 

features like the shape of the serif, or the angle of stress, or angle of terminal. Fonts also vary 

on many parameters, such as stroke modulation, letter skeleton, and letter proportions (for a 

deeper analysis of typeface classification see Bringhurst 2004; Tracy 1980). 

 

Uniquely identifying fonts. Referring to fonts solely as “Garamond”, “Caslon” or “Bodoni” is 

not enough information to be able to identify the font. Digital fonts that are based on historical 

sources exist in multiple versions. As an example (Fig. 6), the group of Garamond typefaces is a 

revival of an Old Style serif design by a 16th-century French engraver, Claude Garamond. 



 

 

 

Typefaces of this group include versions from Adobe, ITC, Ludlow, Peignot, Stempel, URW, 

Berthold, Monotype, etc. For the benefit of study analysis and future researchers, we 

recommend accurately noting the specific fonts used in a study, referencing the Family - Style 

and any attributes applied (e.g., CSS property setting, like “ITC Garamond - Regular”). 

 

 

 
Figure 6. Examples of Garamond fonts from nine different foundries. Note how much they vary in the 

design of the letters. The letters are superimposed at the left to make the amount of variation more 

visible. 

4.2.2. Selecting Fonts based on Availability 

 

There are over 600,000+ publicly available fonts. At most, a few thousand typefaces have been 

designed to improve readability. Only a few hundred of these typefaces have been optimized 

for screen, and only a few dozen are ubiquitous. This section will elaborate on various matters 

to consider in the visual presentation of text content for reading experiments. 

 

For many readability researchers, the availability of test fonts is a practical consideration. Times, 

Arial, Georgia and Verdana are the most common typefaces, and are often used in studies 

(Wallace et al. 2020; Pušnik 2016; Bernard 2001). Sometimes called the web safe fonts, they 

appear on all Apple and Microsoft products and therefore are available to all web browsers. In 

addition, Google, Adobe, and IBM have also made high-quality typefaces available for free 

distribution. At the time of writing, some of these fonts can be found on the websites of Google 

Fonts (https://fonts.google.com) and GitHub (https://github.com). Such fonts can be used free of 

charge, hosted or self-hosted. In general, fonts should be legally obtained and used with 

consideration of the licensing terms. 

 

Intentional and unintentional font replacement. All operating systems have lists of font 

aliases that are used when a popular typeface is not available. For example, while Helvetica 

comes preinstalled on Apple’s macOS, it is not available on standard Microsoft Windows 

installations. Instead of Helvetica, Arial will be used. This also applies to the web safe fonts 

Arial, Times, Georgia, and Verdana, which are not available on Android devices and are all 

aliased to various fonts in the Roboto family. Users and IT administrators can also install fonts 

https://fonts.google.com/


 

 

 

with the same name as a popular (or web safe) typeface that are completely different. Even 

more insidious, they could install a different version of the same font with small, but significant, 

design changes. Therefore, we recommend always bundling the typefaces with your test cases, 

to prevent unwelcome surprises while running experiments. If you can’t bundle the typefaces, 

test if the expected fonts are used on all devices and browsers you intend to use. 

 

Essential decisions of how to visualise test stimuli should ideally be made by professionals. A 

skilled typographer not only understands the theoretical foundations of what makes a typeface 

function in a given reading situation, but also draws on a significant amount of tacit knowledge, 

acquired through years of schooling and training. 

4.2.3. Controlling Font Properties 

 

No matter the experimental paradigm, the visual appearance of stimuli will always affect the 

final results. A common approach in readability research is to compare reading performances 

using fonts of different typeface families. Different font categories (Figure 7) vary on multiple 

properties (Figure 8), anatomy, and attributes, each of which can affect reading.  

 
 

Figure 7. (top) Sans Serif (blue) and slab (red) fonts from the Roboto family. The two fonts are 

superimposed to visualize the differences in letter weight, width and serifs. (bottom) Variable font Roboto-

Flex with x-height being adjusted to demonstrate the effect on the visual appearance of the font. 

 

 



 

 

 

 
Figure 8. A typeface can include many variations of weights and widths, such as this example made with 

variations of Roboto-Flex, a variable font. 

 

For example, the presence of serif on a font has been shown to lower reading speed at small 

sizes compared to the same font without serifs (Morris et al. 2002), yet in other reading 

situations, serif can improve recognition of single letters on vertical extremes at a distance 

(Beier & Dyson 2014). Low stroke contrast improves word recognition (Minakata et al. 2020). 

Simple letter skeletons result in greater letter recognition (Beier & Larson 2010; Beier et al. 

2018). Condensed fonts impair letter recognition (Oderker & Beier 2020), and so do heavy and 

light letter weight fonts (Beier & Oderkerk 2019a), which also slow down reading speed (Chung 

& Bernard 2018).  

 

Perceptual size matters. Traditionally, many studies have focused on comparing different 

typefaces such as Arial and Times New Roman and comparing these in the same fixed point 

size per condition (Bernard et al 2001; Wallace et al. 2020). This approach may introduce 

confounds, as the perceptual size of a font is dictated by its x-height (distance between the 

baseline and the mean line in a font) (Fig. 9), and not its point size (Beier 2012). In recent times 

this has led to efforts to present stimuli fonts at a perceived font size by comparing fonts set at 

similar x-height (Wallace et al. 2020 VSS; Xiong et al 2018; Beier & Oderkerk 2019b). Most 

fonts contain OS/2 tables that show various parameters set by the authors, such as x-height 

and length of ascenders and descenders. However, not all fonts have accurate OS/2 values. 

 

The problem of interacting variables. To identify the effects of specific font properties that can 

be transferred to other fonts, research will need to isolate the significance of properties. This 

can be done by comparing fonts belonging to the same typeface family (e.g., width variation 

between Univers Condensed and Univers Expanded), or design fonts for the experiments where 

all other possible interfering variables are controlled for (Beier 2013; Gürtler & Mengelt 1985; 

Beier & Oderkerk, 2019a, Chung & Bernard, 2018). 

 

 

 

http://s/typography/opentype/spec/os2)


 

 

 

 
Figure 9. A comparison of two fonts of different x-height set at identical font sizes (Helvetica Regular and 

Adobe Garamond). The different x-heights result in Garamond having longer ascenders and descenders, 

as well as appearing to have greater leading between the lines of text and having a smaller font size. 

 

 

 

 
Figure 10. Decovar, a Google Font, designed by David Berlow, Font Bureau, 2017, demonstrates how 

different serif structures can co-exist in a single variable font file. 

 

Variable fonts. The introduction of Opentype 1.8 in 2016 has made it possible to have many 

fonts in a single file (Figure 10); this is known as variable fonts (Hudson 2016). This format 

allows for the different properties of the font to vary on a single or multiple axes with extreme 

instances at the ends. For example, the weight of a bold font, the width of an expanded font, or 

the stroke contrast, are not predefined. The user can choose the exact coordinates on one or 

more axes. This flexibility can enable researchers to be more in control of the magnitude of 

each font variable (Figure 7,8). 

4.2.4. Controlling Typographic Settings and Environments 

 

Control typographic settings. In addition to controlling the font selection and properties, 

typographic settings should ideally be controlled. Some of the typographic settings that have 

shown to influence reading are letter spacing (Perea & Gomez 2012), word spacing (Slattery & 

Rayner 2013), contrast polarity (Dobres et al. 2017), background complexity (Sawyer et al 

2020), and font color (Ko 2017). A common approach is to use cascading style sheets, or CSS, 



 

 

 

to manipulate the typographic setting (Wallace 2019). CSS contains font properties that can be 

used in the analysis of font weight and word spacing and can be further used to manipulate the 

page layout of the text presentation. For example, the background color and the width of the 

paragraph can be manipulated to affect visual span. 

 

Consider how fonts may be perceived. In addition, familiarity with the text and its 

presentation is of importance. Unfamiliar fonts (Beier & Larson 2012; Zineddin 2003) or 

unfamiliar script styles (Pelli 2006; Ngiam et al 2018) can negatively influence reading. Also, 

given the apparent agreement on perceived font personalities (O'Donovan 2014), text stimuli 

need to be controlled for semantics, vocabulary and context (see also Section 4.1). Recent work 

in this space explores the space of matching recommendations (Shirani 2020, Kulahcioglu 

2020), and bespoke fonts for a given context (Wang 2020). 

 

Consider what purpose different fonts were designed for. It should not be assumed that all 

fonts are equally appropriate for testing on all reading platforms or for all reading situations. 

Many large-size typeface families include fonts of different optical sizes, where the fonts for 

smaller sizes typically have larger x-height, low stroke contrast, and greater width and spacing 

(Ahrens & Mugikura 2014). Many typefaces were designed and engineered for specific 

rendering systems (e.g., Microsofts’ ClearType fonts (Berry 2004)). Typefaces can also be 

designed with specific attention to how they will be used by content developers (graphic 

designers, web designers, app developers, ux/ui developers), and indeed many other specific 

applications or users. Most fonts designed for use on-screen will work well in print, while not all 

fonts designed for print will work well on screen, and some fonts designed for large sizes will not 

work well in small sizes. 

 

To ensure external validity, a central question is whether test stimuli presented on one type of 

screen and resolution automatically transfer to any other screen or printed matter. New reading 

formats are constantly emerging. It is difficult to predict if findings reached through the use of 

traditional screens can be transferred to reading on new displays such as AR and VR.  

Mixing and matching different font formats with different digital representations may have a 

negative effect on the validity of experiments if rendering and resolution are not controlled for, it 

is very likely that a specific font or typographic variable will benefit reading in one environment 

but not another. 

4.2.5. Considering Resolution and Rendering 

 

Screen optimization of fonts usually includes: large x-height, open apertures, large 

counterforms, generous letter spacing, limited stroke contrast and delta hinting (Fig. 11). 

Other central variables to consider are rendering (Ahrens, 2021), font size, resolution, browser, 

and operating systems (Baset, 2020).  

 

https://shaunwallace.org/readability/


 

 

 

 
Figure 11. Delta hinting, apertures, and counter forms are three critical features of a font that can 

significantly affect their appearance on digital screens.  

 

Nearly all fonts store their outlines as Bézier curves so they can scale to any size without 

losing fidelity. A notable exception is bitmap fonts, which use images instead of resolution-

independent vectors. Bitmap fonts are often used to display emoji (though there are also vector-

based emoji fonts) and special care must be taken when using these at large or small font sizes. 

 

There are two competing approaches to storing Bézier curves in a font, TrueType by Apple and 

Microsoft, and the Compact Font Format (CFF) by Adobe. The primary difference between 

these is that TrueType uses quadratic bézier curves while CFF uses cubic bézier curves and 

the way they perform hinting. The difference between quadratic and cubic beziers is not a 

concern at common reading text sizes, but the difference in the hinting approach can have a 

significant impact on the legibility of a font, as explained in the following. 

 

Software libraries called rasterizers turn vector fonts into pixels for display on the screen. Most 

rasterizers are part of the operating system, but there are also standalone rasterizers that can 

be used on multiple operating systems. There are four rasterizers in common use: GDI and 

DirectWrite on Windows, Core Graphics on macOS and iOS, and FreeType on Android, Linux, 

and ChromeOS. Rasterizers turn Bézier curves into pixels by sampling them at the desired 

resolution. At its most basic, the rasterizer checks whether each pixel is inside or outside of the 

curve. If the pixel is inside the curve it is colored black. If this sampling is done at a high enough 

resolution or a large enough font size, the result is a near-perfect approximation of the curve.  

 



 

 

 

 
Figure 12. Rasterizing at different resolutions and font sizes. 

 

Resolution and font size are thus linked. High-resolution screens produce good results at low 

and large font sizes, but the legibility suffers when small font sizes are used on a low-resolution 

screen (Fig. 12). To address these issues, fonts include hinting instructions, which tell the 

rasterizer how to behave at low resolutions. TrueType fonts include these hinting instructions in 

the font itself, while CFF-based fonts rely on the rasterizer to fix these issues. The TrueType 

approach gives more control to the type designer but is also more time-intensive and thus 

expensive. Typefaces that include extensive hinting are often advertised as especially geared 

towards legibility at small sizes. Not all rasterizers support hinting, for example, Apple's Core 

Graphics rasterizer ignores hints because Apple's devices generally have high-resolution 

screens which reduce the need for extensive hinting. 



 

 

 

 

If possible, favor extensively delta hinted typefaces for legibility and readability studies. While 

some rasterizers may ignore the hints, others will benefit from having high-quality hints. It is 

believed that this simple rasterization approach works fine for printers because they have very 

high resolution. Unfortunately, screens don't have such a high resolution yet, so rasterizers 

perform antialiasing to approximate smooth curves at low resolutions. There are two types of 

antialiasing: grayscale and sub-pixel. Grayscale uses grayscale values to approximate partially 

filled pixels, while subpixel antialiasing uses a screen's red, green, and blue sub-pixels to 

achieve the same. While sub-pixel rendering may sound superior, it is often disabled because 

subpixel antialiased text cannot be rotated. The subpixels in a physical screen are fixed, so 

subpixel antialiasing only works well on screens that have a single, fixed, orientation. Sub-pixel 

antialiasing also produces noticeable color fringing on low-resolution screens which can be 

distracting to some readers. To make matters worse, sub-pixel antialiasing is implemented 

slightly differently in each rasterizer. Notably, there is presently little research to determine 

whether these processes lead to enhanced readability, and what little exists calls into question 

whether they are even detectable by human observers (see Hancock, Sawyer, and Stafford, 

2015). 

4.3. Licensing 

 

To be able to freely use content in reading studies, the source material needs to have the 

appropriate use licenses attached to it. This is particularly relevant to industry partners who may 

use the results of reading studies to inform commercial applications and future product 

development. The U.S. Copyright Office Fair Use Index is an educational exemption for using 

copyrighted materials in the classroom (U.S. Copyright Office 2016). To reuse content for 

research within an academic setting, it is advised to consult with your university’s or 

organization’s legal counsel to determine if your research meets the standards of the fair use 

exemption. You might also look for text available in the Public Domain or under Creative 

Commons licenses.  

 

Content creators can also be open to having their content, whether it is full texts, excerpts or 

fonts, used for research purposes. It is critical to work with the property owners to get 

permissions that allow for research while protecting their intellectual property and to establish a 

mutual understanding of how the results will be shared. Font's End User License Agreement 

(EULA) varies greatly in how the user is permitted to use the font and how much the user is 

permitted to alter the font. If you are interested in altering an existing font, it is suggested to 

seek out open source fonts where adjustments are permitted. In any case, if you are using fonts 

for research, it is recommended to ask the copyright holder. Copyrights can be found in the font 

data. When in doubt, researchers can inquire on typedrawers.com.  

 

It is also strongly desirable that all results, whether supportive or not of the content used, are 

shared for the value such learnings add to the broader field. We recommend making all data 

publicly available, as it may affect past and future readability data analysis. Indeed, we submit 



 

 

 

that the lack of easily accessible materials, and of unfavorable results, is a significant 

impediment to research in this space, and we see this as an important area of future growth of 

the field. We urge educators, designers, researchers, and content creators to collaborate in 

assembling and freely disseminating properly-leveled reading materials (passages and support 

materials - e.g., comprehension questions) for different populations of readers, and we urge 

researchers to recognize the importance of the visual representation of texts and their possible 

impacts on study results. 

5. Equipment, Devices, and Software Tools 

 
Figure 13. Fundamental tools for understanding readability have changed dramatically, with the promise 

of more change to come. 

 

People read on many different platforms and in many different contexts, from glancing at road 

signs to scrutinizing news articles (MacFadyen, 2011; Margolin, et al. 2013). In this section we 

discuss experimental set-ups for studying how readers read on digital devices, from brain 

imaging and eye tracking devices in the lab, to virtual experiments designed for the web (Fig. 

13). The appropriate hardware and software to employ for a reading study depend on the 

context and environment, the target reader populations, the specific research questions, and the 

availability of resources. This section offers some considerations, some recommendations, and 

some weighing of factors in favor of the use of different experimental equipment, hardware 

devices, and software tools. 



 

 

 

5.1. General-Purpose Digital Displays 

 

Modern reading has grown significantly more complex since the widespread adoption of the 

digital display in the 1970s. Where once text was read solely from printed material, reading is 

now done on a wide variety of display types: large desktop monitors, high resolution 

smartphones, lower resolution purpose-built displays (kiosks, in-vehicle dashboard displays, 

etc.), specialized e-ink devices, smart watches, etc. Early studies of the legibility of digital text 

suggested that it was inferior to traditional printed material (Mills & Weldon, 1987). More recent 

studies suggest that as the resolution and fidelity of displays has improved, displays have 

achieved parity with print in terms of pure legibility (Margolin et al 2013), though readers may be 

able to maintain better awareness of their performance with print (Clinton 2019). 

 

LCD displays versus e-ink displays. One key difference between print and digital displays is 

that print (and e-ink) reflect light, while digital displays emit light. E-ink displays (e.g., like 

Amazon’s Kindle) have no backlight. There has been a body of research comparing the two 

media. Results have been mixed, and in aggregate suggest that print/e-ink and digital LCD 

displays have equivalent practical legibility (Siegenthaler et al 2011; Siegenthaler 2012; Lee et 

al 2008). Differences in legibility between display types may in fact have more to do with the 

amount of illumination, both in the environment (Lee et al 2008; Dobres et al 2017) and in the 

amount of light being emitted directly from the screen (Dobres et al 2016). Research suggests 

that lower illumination settings cause the pupil to dilate over the imperfect surface of the eye, 

thus exacerbating the effects of astigmatism and smaller flaws in the lens, ultimately hindering 

legibility (Piepenbrock et al 2013; Taptagaporn & Saito 1989). These findings present a 

particular problem for increasingly popular “dark mode” designs, which are self-reported to 

reduce eye strain (Eisfeld & Kristallovich 2020), but may have reduced legibility due to their 

lower-light nature. 

 

Capturing reader behaviors on digital displays. General-purpose digital displays (Yeykelis, 

Cummings, and Reeves, 2014) provide the potential to reveal how readers are moving through 

a piece of text through incidental movements. Such movements can be captured without 

impinging on natural reading behavior, a key consideration for understanding how readers read 

in real-world situations. These can include a reader’s click-stream as they move through a 

document, where they position their mouse (Cooke, 2006; Huang et al., 2011), and how they 

scroll through a document (Fitchet & Cockburn, 2009), including multi-touch behaviors on 

phones and tablets. Screenshot software can be employed to determine what participants have 

on screen (Brinberg et al. 2021; Reeves et al. 2019) but can also include gyroscope data from 

modern smartphones (Pires et al., 2018) which can reveal, for example, whether a reader is 

engaging with a text while walking through the orientation of their device (Barnard et al., 2007; 

Mustonen et al., 2004). Finally, audio recordings, which can be supported by any device with 

audio input, can be used to approximate reading activity through read-aloud protocols (Banerjee 

et al. 2011; Bernard et al., 2001; Rello et al., 2016). 



 

 

 

5.2. Research Equipment 

5.2.1. Eye Tracking 

Since reading requires a reader to move their eyes from word to word along a line of text (e.g., 

to make saccades from one word to the next), eye tracking (Table 1) has been a key technique 

in reading research since it was first developed more than a century ago (Javal, 1879; 

Rayner,1998; Tinker, 1946). Tracking where a reader looks whilst they read can reveal what 

words in a sentence they skip, whether they backtrack, and how they move through a passage--

and, potentially, show what visual strategies they are adopting based on the type of reading 

(see Section 2.1). That being said, while eye tracking is a powerful method, there are significant 

limits on what gaze information can tell researchers, since fixating at a word is no guarantee it 

was read or understood (Drew et al., 2013), and deducing what a reader was doing based only 

on where they looked is difficult since it requires knowing how to classify different types of 

reading based on gaze behavior, what the reader’s task was, and whether that task is 

appropriate to the text they were reading.  

 

Hardware-based eye tracking. A range of eye-tracking equipment exists, typically in the form 

of non-intrusive hardware that uses near-infrared light to create reflections on the eye and, in 

conjunction with a camera pointed at the participant’s eyes, uses these reflections to infer the 

eye position, orientation, and its movements (Hammoud, 2008). This specialized equipment 

comes in two main forms: head-mounted systems (Cognolato et al., 2018) and remote systems 

(Niehorster et al. 2018).  Head-mounted systems structurally resemble eye glasses and are 

preferred in naturalistic studies that involve a lot of movement, for example, in marketing 

research on product placement (Hendrickson & Ailawadi, 2014). Remote systems are stationary 

and the eye tracker is mounted near or integrated in a monitor. These eye trackers are capable 

of higher performance and accuracy compared to head-mounted systems. These characteristics 

can be further augmented when the eye tracker is coupled with head stabilization (e.g., using 

chin rests or bite bars) which keep the participant at a constant distance from the screen and 

minimize movement. Additionally, remote eye trackers are often more appropriate for reading 

studies as they are mounted on the specific screen that the reading task will take place on. In 

the case of reading studies on mobile devices, remote, standalone eye trackers must be 

mounted along with the mobile device on a specialized stand. On the other hand, head-mounted 

systems allow for movement and can be used in non-digital settings but may create challenges 

on mapping the gaze on specific areas of interest due to the distortion of the scene that comes 

with movement. Beyond desktops, laptops, and mobile devices, eye tracking have also been 

embedded in virtual and augmented reality devices. Some popular eye tracking manufacturers 

include SR-Research, Pupil Labs, and Tobii which offer a range of research- and consumer-

grade systems. 

 

Camera-based eye tracking. Recently, software solutions that use standard webcams have 

been developed as an answer to the high cost of such equipment that can rise to tens of 

thousands of dollars with a compromise in the quality of data acquired. They are browser-based 

(e.g., Papoutsaki et al. 2016), desktop (e.g., Zhang et al. 2019), or mobile applications (e.g., 

https://www.emerald.com/insight/search?q=Kirk%20Hendrickson
https://www.emerald.com/insight/search?q=Kusum%20L.%20Ailawadi


 

 

 

Krafka et al. 2016). While the research-grade systems can offer extra capabilities, such as 

pupillometry to measure cognitive load, or alertness, in addition to superior performance and 

accuracy, the democratization of eye tracking could enable psychophysiological research to be 

conducted on a large scale in many different environments. 

 

Table 1. Advantages and Disadvantages of Eye-tracking System Types 

 

5.2.2. Neuroimaging 

Neuroimaging research can inform our understanding of which brain regions and networks are 

active during reading, as well as the underlying processes of reading. Since reading is a visuo-

cognitive process, non-invasive neuroimaging techniques like electroencephalography (EEG) 

and functional Magnetic Resonance Imaging (fMRI) have the potential to reveal internal 

cognitive and linguistic processes that are otherwise inaccessible to researchers.  

 



 

 

 

EEG Systems. Electroencephalography is used to measure electrical activity in the brain using 

non-invasive electrodes placed on participants’ scalp while the participant is performing a 

cognitive or linguistic task of interest. Choosing an appropriate EEG system depends on the 

population being studied and the goals of the experiment. For instance, the number of 

electrodes in an EEG system varies greatly from just a few electrodes up to 256. Systems with 

more electrodes will naturally require a longer and more extensive setup, but will provide better 

localization, that is, where activity is occurring in the brain. However, a long setup time may not 

be well tolerated by some populations, such as children. Another distinction can be made 

between wet and dry electrodes. Wet electrodes are so named due to the electrolytic gel that 

needs to be applied to the scalp to serve as a conductor. Dry electrodes make setup much 

easier, but the signal to noise ratio is worse. Finally, some experiments may benefit from using 

a mobile EEG system, which allows participants greater freedom of movement when compared 

to a traditional EEG system, at the cost of a coarser-grained and noisier signal. A challenge 

when using EEG for reading studies is the noise introduced by eye movements. Methods such 

as independent component analysis (ICA) allow for researchers to identify and remove eye 

blinks from the signal (Jung et al., 2000). Additionally, some researchers are combining EEG 

and ICA with eye tracking to better identify the relevant signal (Dimigen et al., 2011; Plöch, 

Ossandón & König 2012).  

 

ERP components. Event-related brain potentials (ERPs) are waveforms extracted from EEG, 

and are believed to be generated from the summed activity of specific cortical neurons 

(Peterson, Schroeder, & Arezzo, 1995). ERPs have excellent temporal resolution and are 

therefore prime candidates for investigating the time course of multiple rapid processes that 

underlie reading comprehension. Specific ERP components are indicative of different types of 

processing. The names of ERP components often begin with an “N” indicating it is a negative-

going component, or a “P” indicating it is positive-going. Some ERP components frequently 

examined in reading research include the N250, which likely reflects form-based processing 

(Holcomb & Grainger, 2007), the N400 which reflects semantic processing (Kutas & 

Federmeier, 2011; Kutas & Hillyard, 1980), and the P600 which reflects syntactic processing 

(Osterhout & Holcomb, 1992). Researchers can compare the effect of various manipulations on 

the latency, amplitude, and scalp distribution of the ERPs of interest. They can also compare 

ERPs across different populations.  

 

An exciting new development in EEG/ERP readability research is the creation of reading 

corpora associated with EEG data (Frank et al., 2013; Hollenstein et al., 2018; 2020). For 

example, the Zurich Cognitive Language Processing Corpus (ZuCo 2.0) has made publicly 

available EEG data of participants completing a natural reading task, where they read at their 

own pace, compared to a task-based reading task (Hollenstein et al., 2018; 2020). 

Simultaneous eye-tracking data were also acquired and are available in the corpus. We are 

hopeful that researchers leveraging EEG/ERP techniques, or other neuroimaging, in their own 

readability research will be open to releasing additional sets relating a reading corpus to brain 

activity recordings. 

 



 

 

 

MRI and fMRI. Structural Magnetic Resonance Imaging (MRI) generates high resolution images 

of the brain, with the ability to distinguish between different types of tissues (e.g., gray matter 

and white matter) and brain structures. In addition to acquiring structural information, MRI can 

be used to investigate functional activity in the brain using methods like functional Magnetic 

Resonance Imaging (fMRI). When a particular area of the brain is engaged by a task of interest 

the blood becomes more oxygenated in that region as neural activity increases. fMRI is 

sensitive to the blood oxygen level dependent (BOLD) signal as a marker of brain regions that 

are more activated during a task of interest.  

 

fMRI has been used to investigate the processes underlying reading comprehension within 

specific brain regions, such as the visual word form area (VWFA) which is important for 

decoding written words (Cohen et al., 2002; Dehaene & Cohen, 2011). Researchers can also 

investigate brain networks involved in tasks like reading. This is accomplished by examining 

functional connectivity, which is defined as the coactivation of multiple brain regions during a 

task of interest. Investigating functional connectivity can help us understand the overall 

organization of reading in the brain. For example, research suggests that children with 

developmental dyslexia have disrupted functional connectivity between left occipitotemporal, left  

inferior frontal, and left inferior parietal regions that are important for reading comprehension 

(van der Mark et al., 2011).  

 

fMRI can also be used to investigate the contribution of specific regions and brain networks in 

specific populations of interest such as young developing readers, or dual language learners. 

For instance, Gaillard and colleagues (2003) found that the reading network in young 

developing readers is very similar to the reading network in adults. As another example, 

Meschyan & Hernandez (2006) investigated the neural networks activated during reading in 

Spanish versus English in a group of Spanish-English bilinguals. They found that the less 

proficient language activated the brain’s articulatory motor system, and was associated with 

slower reading times.  

 

Comparing EEG and MRI. Electrophysiological methods like EEG have excellent temporal 

resolution, which is an advantage when studying reading, where many processes occur in quick 

succession. However, EEG does not have sufficient spatial resolution which means the specific 

brain areas involved in various processing steps cannot be inferred from EEG alone. 

Researchers have been developing high-density EEG systems combined with source 

localization algorithms to enhance the spatial resolution of EEG (Michel & Brunet, 2019). 

Methods like fMRI have relatively poor temporal resolution, but they do have excellent spatial 

resolution. Techniques like fMRI are used when researchers are interested in investigating the 

specific brain regions activated during reading tasks. Recent work in cognitive neuroscience 

shows promise for “fusing” the temporal resolution of EEG with the spatial resolution of fMRI via 

analysis techniques, for a deeper understanding of brain processes (Cichy & Oliva, 2020). 

Unfortunately, high quality neuroimaging systems and data analysis are quite expensive and 

require specialized training to use, calling out the need to collaborate with neuroimaging 

specialists for studies that require use of these methods. 



 

 

 

5.2.3. Virtual Reality and Augmented Reality 

Virtual Reality (VR) and Augmented Reality (AR)–often referred to as Mixed Reality (XR)–have 

gained popularity as a research platform. VR simulations are often used for training and 

educational purposes as users adopt similar behaviors in VR as they do in the real world. 

Studies in VR allow researchers to put participants in different real-world scenarios and 

investigate different in-field environments at scale (Mäkelä, 2020). Platforms such as the 

Hololens or Vive Pro headsets (Microsoft, 2021; Vive, 2020) have higher fidelity head and eye 

tracking than mobile devices as well as allow for 3D interaction with the content. Such platforms 

provide opportunities and new challenges for readability research.  

 

Text for augmentation. AR applications are designed to enrich users' physical activities with 

digital information overlaid visually. This paradigm makes digital text powerful by tying in the 

context of on-going activities—for example, remote assistance and responsive instructions 

(Wisotzky et al, 2019) used in industrial training or interactive gaming experiences (Kim et al., 

2019; Ružický et al., 2020; Pokémon GO 2021). A common challenge is that text reading 

happens as users engage in other activities in parallel. It can be difficult to ensure users see the 

text when their mental load is high, (Lindlbauer et al., 2019) and continuously changing 

surroundings as background textures can cause legibility issues (Gabbard et al. 2006). 

Therefore, parameters such as textures in the AR background, lighting, user's attention-levels, 

and mental load can contribute to the overall text readability.  

 

Challenges for rendering text in AR/VR. Reading in mixed-reality environments is becoming 

more prevalent with the commercialization of consumer devices and advances in display 

technology that allows high-quality text renderings. When e-books were introduced, a large 

body of research focused on comparing paper to digital screen reading. Mixed reality reading 

studies have not received that same attention yet. These platforms introduce readability 

challenges when presenting text in simulated 3D environments or when superimposed over the 

ambient environment in AR settings. The placement of text with AR can be a safety 

consideration, and early work showed that users preferred that it was placed in uniform regions 

(Orlosky et al., 2013). Rzayev and colleagues investigated reading on head-up displays and the 

effect of text position and presentation type on the reading experience (Rzayev, 2018). Effective 

positioning depends on the user’s primary task: when focused on the reading, a center position 

in an AR display allows for best comprehension. During walking, on the other hand, shifting the 

text position to the bottom center helps users to keep track of their path while reading. In 

immersive displays, resolution can limit readability and research has shown magnification and 

augmented floating text lead to favorable experiences for users (Knaack et al., 2019). Other 

research has explored optimal readability settings for font and distance (Büttner et al., 2020), as 

well as text size and positioning (Dingler et al., 2018). 

 

Opportunities for immersive reading. Other works have started to explore text renderings on 

3D objects where text is warped across concave or convex surfaces (Wei, 2020) and text 

interaction in virtual environments (Dingler, 2020). Virtual environments have the potential to 

immerse the reader in multimodal reading experiences where the visual, audio, and haptic 



 

 

 

environment adjusts to the content. We expect to see much more research in this regard with 

novel reading applications that immerse readers and provide innovative reading experiences. 

Notably, while some VR headsets come with eye-tracking capabilities, they may not come with 

the licenses that allow for experimenters to actually use the data; we advise caution and careful 

reading of licenses in such equipment.  

 

To work out readability parameters for mixed reality text renderings, such as which font family is 

most adequate in 3D environments, lab studies offer a controlled way to guide participants 

through different reading conditions. Compared with studies on 2D displays, participants may be 

subject to motion sickness and increased visual fatigue. Experimenters should allow participants 

to take frequent breaks and monitor motion sickness symptoms.  

 

Taking viewing distance into account. In VR, readers are fully immersed into an environment 

as their visual, auditory, and even haptic and olfactory channel (Brooks, 2020) can be catered 

to. For readability, text display parameters, such as the angle size are important design 

considerations in VR. Google introduced a unit for perceived size in VR called ‘distance-

independent millimeter’ (dmm), where 1dmm equals 1mm height at a 1m viewing distance. The 

unit allows to design layouts that can be applied to any screen at any distance. The perceived 

distance of objects in VR is dependent on vergence, i.e., the eyes’ simultaneous pupil 

movements towards or away from one another when focusing. We explored font size, vergence, 

and view box dimension for comfortable reading in VR (Dingler, 2018) finding the median most 

comfortable distance to be 2.7m. 

5.3. Software Tools 

With a focus on readability, study designs in this space rely on an ability to experiment with the 

presentation of the underlying document text (i.e., typographical and format changes) to 

evaluate the resulting effects on the ease with which a reader can decode the document. Here 

we discuss platforms that allow for manipulating text formats for such purposes, including 

existing commercial tools and new research platforms.  

5.3.1. Commercial Tools 

Reading on digital devices, whether those devices are laptops, smartphones, tablets, or 

dedicated e-readers, brings with it a new set of considerations that have helped to spur 

readability research in the recent past. Readers using these devices, whether they are reading a 

PDF in Adobe Acrobat Reader, a webpage in a browser window, or an e-book on a dedicated 

device, are increasingly being offered opportunities to change the font, text size, character and 

line spacing, background color, and more to suit their individual needs and preferences. Adobe 

Acrobat Reader with Liquid Mode, Amazon’s Kindle app, Apple iBooks, and Microsoft 

Immersive Reader are examples of reading applications with a subset of these readability 

features included. At the time of this writing, a current list of features in reading applications is 

summarized in Table 2. 



 

 

 

Table 2. Typographical Manipulations Available by Reading Application

 
 



 

 

 

 

Instead of being limited by existing tools, the avid researcher can create customized reading 

materials by varying font features (like type, size, character and line spacing). Options include 

using Microsoft’s Office Suite or similar document editors, working with variable fonts on support 

platforms (https://v-fonts.com/support), and using design software like InDesign.  

5.3.2. Research Platforms 

The Virtual Readability Lab (VRL) is a new platform containing several essential building blocks 

to engage users interested in self-paced studies. The VRL contains smaller 5-minute versions of 

previously published tests on reading speed and font preference (Wallace et al. 2020). It also 

contains additional 5-minute tests for users to find their optimal character spacing. The VRL 

allows other researchers to develop additional tests by using a unified database and building on 

current and future modules that passively track human behavior to enable studying reading 

behavior in-the-wild. The VRL also contains functionality to allow for teachers to sign-up their 

students and download their progress as each student takes various tests on the VRL to find out 

which font optimizations can improve their reading experience. The VRL relies on the voluntary 

participation of users by providing them insights about different ways to improve their reading 

behaviors, and it allows for users to compare themselves to the general population. This idea of 

motivating voluntary participation by providing to participants insights, scientific knowledge, and 

social comparisons has been successfully implemented by LabintheWild (Reinecke et al. 2015). 

LabintheWild has also conducted reading studies in the past, for example, exploring how 

webpage design affects reading experience and information retention, or reading and 

understanding different types of graphs. 

Readability Matters has developed and made available the open-source Readability Sandbox. 

The Sandbox uses variable fonts to allow users to explore standard readability features such as 

font, font size, character spacing, character width, font-weight, line spacing, column width, and 

background color. Researchers can leverage this code for their testing purposes.  

 

 

http://readabilitylab.xyz/
https://readabilitymatters.org/readabilitysandbox/
https://github.com/ReadabilityMatters/TuneYourText


 

 

 

6. Experimental Methodologies 

 

Figure 14. Readability literature contains great diversity in terms of experimental metrics and methods. 

This section provides methodological guidance, with special attention to metrics, methods, and 

factors and considerations. The following is based on existing literature and the experience of 

the authors, and while not exhaustive, represents our perception of “core” readability 

methodology. The readability literature presently contains great diversity in terms of 

experimental metrics, methods, and factors considered, and as such what we present should be 

considered a foundation on which to build (Fig. 14).  

6.1. Metrics 

Readability interventions must be measured through metrics which gauge reader efficacy.  

Efficiency metrics should not be confused with “readability formulas” (see Crossley, Allen, and 

McNamara, 2011), predictive tools which exist to predict content readability before reading, 

relative to the level of the reader. Such predictive metrics are helpful in attaching material to a 

grade level, but are inherently unable to relate experimental manipulations to changes in 

reading efficacy. The metrics we present here all focus on efficacy, and in various ways 

measure readability by measuring factors which indicate success of the reader. 



 

 

 

6.1.1 Reading Speed 

Reading speed, often described as words per minute, is one standard metric for readability 

assessment. The speed of reading is often calculated in “words per minute” (WPM), calculated 

as the number of words read divided by the number of minutes taken to read them (Sawyer, 

2003).  Different researchers have found different ways to identify “words”, including absolute 

word count, number of characters per “standard word”, other aggregate numbers across 

paragraphs and pages, and still more schemes intended to smooth out the relative differences 

between written passages based on the stochastic nature of the language used.  For example, 

a simple thought experiment will reveal that German prose likely involves more characters per a 

“real word” in English prose, and Chinese characters certainly provide possibly insurmountable 

challenges to any universality of the measure of “WPM”.  

Mechanically, the speed of reading is a function of moving eyes across the page in a series of 

jerking movements termed “saccades“ and longer motions from the end of each line to the 

beginning of the next termed “return sweeps“. As a reader makes saccades, the distance of 

between stopping points is referred to as “ reading span“, and a larger span is unsurprisingly 

associated with faster reading. The speed with which readers perform return sweeps also 

varies, and in fact readers can be trained to make return sweeps more quickly in return for 

modest gains in reading speed. A simple thought experiment suggests that when the 

information on the page is not received by the reader, the reader must either forgo that 

information or read again. We have all experienced stopping mid-page to discover we have no 

memory of the content, even though our eyes have mechanically swept across every line 

(Sawyer, 2003). Indeed, the tendency to focus upon reading speed first and foremost obscures 

the fact that speed in reading is necessarily joined by the concept of accuracy in acquiring 

information, or reading comprehension. 

6.1.2 Reading Comprehension 

Reading comprehension is another standard metric for readability assessment. Comprehension 

in reading must be measured by probing participants' understanding of what they have read.  

The most common method for assessing reading comprehension is the use of “comprehension 

questions” relating to the material which has been read. Most studies, presumably for reasons 

of practicality, favor questions delivered shortly after reading, although naturalistic scenarios 

would seem to favor assessing comprehension further from the time of reading. Computing 

comprehension often takes the form of a percentage, where the number of correct 

comprehension questions are divided by the total number of comprehension questions.  

The present lack of common and consistently used collections of passages and questions in 

readability research means that comparing between studies can be challenging as it is difficult 

to know whether the measurement instruments are comparable. Reading comprehension, 

therefore, is presently a standard metric which lacks a standard instrument of measurement. 



 

 

 

Comprehension questions can be designed to tap a variety of comprehension strategies. Recall 

questions require readers to directly recall specific information from the text. Inference questions 

require readers to connect the information to fully understand the text. For example, questions 

can probe within-text inferencing abilities by requiring readers to connect information from 

multiple parts of the text. Summarizing questions require readers to combine main ideas 

presented in the text. Questions regarding the main idea or purpose of the passage can rely 

primarily on recall and recognition or, in more complicated texts, will require readers to 

synthesize information across the text and infer the main idea(s). Readers with strong 

inferencing skills are better able to fully conceptualize the text’s purpose and meaning. For 

example, “Was Heraclitus of Ephesus renowned for a) philosophy b) textiles c) skateboarding or 

d) painting?” Practiced students can guess, and have honed the skill of answering formulaic 

comprehension questions even in the absence of knowledge. A related concern is the 

background knowledge of the participant, which can be addressed through surveys asking for 

reader familiarity or by removing questions that pilot participants indicate can be answered 

without reading the passage (Johnston 1984).  

6.1.3 Speed and Comprehension Together 

Speed in reading is joined by accuracy in acquiring information and understanding, or 

comprehension. The upper bound of speed at which readers can move their eyes from word to 

word will certainly have a negative impact on the ability of that reader to comprehend the 

material.  Therefore, we can say that the aggregate effectiveness of a reader depends upon a 

speed – comprehension trade-off, likely with some similarities to classic speed-accuracy 

tradeoffs (Reed, 1973; McElree, Murphy & Ochoa, 2006). A speed – comprehension trade-off in 

naturalistic reading is not presently well understood and appears not to be a simple exchange 

but one contextually sensitive to, at the very least, reading purpose, material, and reader skill 

(see Section 2.1). A less skilled reader may move more slowly through a passage than a skilled 

reader, making reading speed a useful, simple measure of a reader’s ability to move through a 

given passage. However, comparing reading speed between participants across passages can 

be difficult, since the participant and the passage may both be sources of variability in the data. 

To complicate matters further, slower reading can signal deeper engagement by a skilled 

reader. A participant’s adjustments to their reading speed to compensate for the difficulty of the 

comprehension questions also represents this speed - comprehension tradeoff. When designing 

a study to measure reading speed, it is essential to counterbalance the order of passages and 

participants so that all passages are read the same number of times by all participants, and if 

the study involves varying typographical settings of stimuli, counterbalance this as well. That 

way, any possible difference found will relate to the difference of stimuli and not differences in 

the passages. We also recommend investigating the speed – comprehension trade-off in 

naturalistic reading in future research. 

Fundamentally, reading comprehension is a more complex and subjective measurement than 

that of speed, and indeed reading comprehension is a more complex construct, requiring 

consideration of reader ability to retrieve, use, and integrate the phonological, morphosynthetic, 

semantic, and orthographic aspects of reading, as well as consideration of individual ability to 

https://www.zotero.org/google-docs/?broken=t8iUNK


 

 

 

recall background knowledge and synthesize this with the text (Alexander, Kulikowich, & 

Schulze, 1994; Elbro & Buch-Iversen, 2013).  Matters of interpretation reveal that readers may 

even be required to understand the mental states of the author or the characters the author 

imagines. All of this complexity is filtered through necessary consideration of the cognitive 

processes involved in reading, starting with the transformation of the visual information 

presented upon a page or screen, passing through poorly understood intermediary processes, 

and ending in equally poorly understood mental representations. The challenge in clearly 

elucidating the measurement of reading comprehension, therefore its role in any trade-off, is 

clearly not small. Happily, great strides in understanding are being made in fields including 

neuroscience, vision science, cognitive psychology, and human factors. 

6.1.4 Oral Fluency 

For younger students, oral reading, i.e., reading aloud, is a standard process used by 

elementary school teachers to assess reading behaviors (Fuchs et al., 2001). Measurement 

tools, such as Running Record and QRI, evaluate oral reading fluency, including speed, 

accuracy, and prosody. Oral reading fluency, the speed at which accurate reading occurs, is 

expressed in Words Correct per Minute (WCPM), the number of words spoken correctly relative 

to their written form divided by the number of minutes the reading covers (Williams, Skinner & 

Floyd, 2011). Prosody is a more subjective measurement of expressive reading that measures 

appropriate correct timing, phrasing, emphasis, and intonation (Isardi, 1992). 

Reading aloud can also provide valuable metrics for work with teen and adult readers. Oral 

reading can reveal reading format sensitivities with older students (Rasinski et al., 2017; 

Rasinski et al., 2005; Fuchs et al., 2001). Difficulties in reading aloud can be a result of 

difficulties in the visuo cognitive linkages necessary for fluent reading. Comparing this with 

readers reading silently can reveal where gaps exist in a given reader’s skillset, hinting at the 

process overall.  

6.1.5 Phrase, Word, and Letter Identification 

Some research focuses upon very short phrases, single words, and indeed individual letters.  

While reading at-a-glance is something naturalistically performed on electronic devices, some of 

these tasks have no applied equivalent. These methods instead probe sentence- and word-level 

processing, allowing researchers to carefully control stimuli in terms of the words themselves, 

varying factors such as word length, age of acquisition, or number of syllables.  These methods 

also lend themselves to manipulations involving the presentation of each word with regards to 

orthographic and typographical characteristics of a text, as well as syntactic structure in the 

case of sentences. In word-level semantic categorization tasks, participants are asked to view 

single words and make a semantic decision about each word (e.g., “is it alive or not?”). Lexical 

decision tasks may also be used (i.e., “is this a real word?”), but semantic categorization tasks 

ensure participants comprehend stimuli to successfully complete the task. At the sentence level 

researchers often study sentence structure to see how syntax affects comprehension (Brothers 

et al., 2016; Brown et al., 2012, Sorenson Duncan et al., 2020). 

https://www.pearson.com/store/p/qualitative-reading-inventory/P100002458335/9780134161471


 

 

 

Comprehension of individual letters and words via orthographic processing is complex, and 

must be understood in concert with integrating that information with syntactic and contextual 

information. Scientists have debated whether letter identification occurs primarily via a template-

matching versus a feature-based paradigm, but most researchers now support a feature-based 

approach (Grainger, Rey, & Dufau, 2008). Thus, letter identification occurs primarily through the 

identification of individual features, such as horizontal lines, curves (e.g., open up vs. open 

down), and terminations. The set of features that are most important differ depending on the 

specific letter (Fiset et al., 2009). One measure of letter identification involves presenting 

participants with single letters or as letters flanked by one of two other letters to the left and 

right. Often, the aim of such experiments is to investigate limitations of the perceptual system 

relating to visual acuity, visual angle, or physical size of the stimuli (Hancock, Sawyer & 

Stafford, 2015) and visual crowding, a phenomenon of neighboring letters seeming to merge 

perceptually, resulting in misidentification (Bouma, 1970; Bernard et al., 2016; Beier, Bernard & 

Caster, 2018).  

Different models exist to explain the process of word recognition (for example see Davis, 2010; 

Davis & Bowers, 2004; McClelland & Rumelhart, 1981; Whitney, 2001). In general, it appears 

that word recognition involves the activation of relatively flexible letter position coding. For 

example, some models propose that a letter in a specific position (e.g., “o” is in the second 

position of the word “goat”) will activate the node representing a letter in that specific position as 

well as other nearby positions (e.g., also the third position and to a weaker degree the fourth 

position, etc.) (Davis & Bowers, 2004), whereas some other models propose that within-word 

letter pairs are activated (e.g., the letter pairs “go”, “oa”, “gt” will be activated for the word “goat”) 

(Grainger & van Heuven, 2004; Snell et al., 2018). This will in turn activate lexical 

representations of other words with similar letters. Next, whole word representations are 

mapped onto semantic information in the lexicon (Holcomb & Grainger, 2007). 

Word recognition research can use a variety of methods to understand the cognitive processes 

that subserve word recognition. For example, in lexical decision tasks, participants are 

presented with real words and either pseudowords or nonwords one at a time and are asked to 

indicate whether the stimulus in each trial is a word or not. Pseudowords are strings of letters 

that do not form a word but follow orthographic and phonological rules of the language so they 

are pronounceable (e.g., “pable”). Nonwords are strings of letters that do not follow orthographic 

and phonological rules of a language and are unpronounceable (e.g., “pbtlk”). Through the use 

of single, isolated words and pseudowords/nonwords researchers can probe specific questions 

that are easier to examine in a more tightly bound context compared to a task using word 

recognition in a sentence context.  

Researchers may also use masked priming tasks where a prime is presented for a short period 

of time and is masked by either a forward or a backward mask (often a row of hashtags “####”) 

to ensure the prime isn’t consciously perceived. A target is presented next and they are asked 

to make a decision about the target, and this is often a lexical decision. Manipulating features of 

the prime and target allows researchers to investigate the influence of various orthographic and 

phonological factors on word recognition. These types of experimental tasks can be conducted 



 

 

 

using behavioral methods where longer reaction times, and potentially lower accuracy, are 

indicative of more effortful processing. ERPs may also be used to investigate differences to 

specific ERP components of interest (see Section 5.2.2 for more information). 

Methodologies of the letter and word identification may be used to investigate many aspects of 

orthographic and phonological processing, such as measuring the legibility and readability of a 

given font, how the text is, itself is laid out on the page, and even how recognizable or familiar 

the font is to a given reader. Visual features of the background that the text is presented on can 

also be manipulated.  

 6.1.6. Visual Search Success 

Reading is not always a linear, sequential task (e.g., reading through a paragraph in order); 

readers often have to find a given word or phrase or concept in a text, and while this is reading, 

it represents a very different task than reading a paragraph from start to finish. Drawing from the 

cognitive psychology literature, this would be considered a visual search task; that is, looking for 

a target (for example, a particular word, phrase or even a concept) among many distractors. 

This question has been the focus of extensive basic research in the study of visual attention 

(c.f., Treisman and Gelade 1980), and can be broadly thought of as “how does an observer - in 

our case, a reader - find what they are looking for?”  

While the breadth of this literature is outside the scope of this work, Guided Search (Wolfe, 

Cave, & Franzel, 1989; Wolfe, 2021), which frames our question in terms of the similarities and 

differences between the target and the distractors, and uses the similarities to guide where the 

observer attends, is a promising place to start. It is essential to think of search as less “reading” 

in a more conventional sense, but more of an object identification problem in many ways, and it 

can be influenced by a range of visual factors in presentation (e.g., font, spacing, density, visual 

crowding), and by cognitive and linguistic factors. One can imagine, for example, as a reader to 

find a word in a language they do not read - this would certainly be visual search in a reading 

context, but quite outside the scope of most reading tasks. More generally, as discussed 

elsewhere, readers are likely to transition between searching for something specific in a larger 

text and reading in more depth, and understanding this initial search behavior is key for guiding 

and helping readers. 

6.1.7 Pleasure and Preference 

Reading for pleasure is a neglected measure of readability, in a literature more likely to focus on 

speed and accuracy, and indeed we speculate pleasure may be a principal reason for a great 

part of all reading. Reading for pleasure is documented as a primary reason for purchasing e-

readers, as opposed to schools and work environments (Pew Internet Center, 2012), although 

this may be because users do not find work-related readings straightforward when using e-

readers, which do not support easy navigation, annotation, and simultaneous accessibility to 

multiple documents (Massimi, M., et al., 2013).  Leisure reading, conversely, requires a simpler 

set of functionalities, and with these needs met the digital reading experience must provide 



 

 

 

reading pleasure (Hancock. Pepe, & Murphy, 2005).  Indeed, it is notable that very few 

evaluations of readability explore this dimension (see Argarwal & Meyer, 2009 for an exception), 

given that reading has the potential to be an actively and intensely pleasurable act.  We suggest 

this is a future dimension of research, and here fall back to the more modest goal of determining 

preference. 

Font preference is inherently subjective (Miniukovich 2019), and deriving a user's preference is 

no easy task. There are over 600,000 digital fonts available, and time and attention constraints 

make the evaluation of even 100 fonts a challenge. O'Donovan et al. identified the struggles 

graphic designers have when selecting their preferred fonts during real-world tasks. Given 

designers might have more domain expertise in fonts than the average users, what are more 

straightforward tasks to derive font preference? A participant’s labelling of preference for various 

font attributes could be explicit like a Likert scale score from “very much preferred" to “dislike" 

(Yannakakis & Hallam 2011), or implicit in the case of selecting from two different stimuli in a 

pairwise comparison. Both approaches have advantages. Prior reading studies have most 

commonly used Likert scales to determine participant font preference (Banerjee 2011, Bernard 

et al. 2003, Bhatias et al. 2011, Rello et al. 2016, and Wang et al. 2018).  While Likert scales 

are straightforward, and can be easily averaged across users, when averaging these results 

they lose their subjective nature (Stevens 1946). Also, the results can be noisy and inconsistent 

(Negahban et al. 2012) due to a number of factors that are difficult to control for such as visual 

discomfort per participant (Barkowsky et al. 2018, Mantiuk et al. 2018). Likert scales, with 

difficult to understand language or representation of a number line (Clark et al. 2018), can pose 

difficulties for specific populations such as small children (Mellor & Moore 2014) or members of 

other cultures (Bernard & Gravlee 2014). 

A promising alternative to Likert scales are pairwise comparisons (Li et al. 2018), which are 

more stable because this method is not affected by irrelevant alternatives (Ailon 2008). Human-

Computer Interaction researchers have used pairwise comparisons to derive a definitive ranking 

for a user's preference (Guo et al. 2010, Park et al. 2015, Qian et al. 2015, Yi et al. 2013). For 

example, Boyarski et al. arranged two physical monitors side-by-side for users to make pairwise 

comparisons between different fonts (Boyarski 1998). Recently, Wallace et al. designed a digital 

toggle test to allow users to make pairwise comparisons between different fonts on a single 

screen (Wallace et al. 2020 chiLBW).  allows researchers to definitively rank large numbers of 

fonts in terms of preference using methods such as Elo Rating or TrueSkill. Pairwise 

comparisons for a large number of stimuli can take longer given the total number of 

comparisons a participant must complete. This method can suffer from the transitive property 

where a participant could prefer font A > B > C > A. Another disadvantage of pairwise 

comparison is there is currently no accepted hypothesis test available. Recent readability work 

by Wallace et al. have used a double-elimination tournament to eliminate the transitive property 

and limit the number of comparisons between 16 different font pairings. This method has an 

additional benefit where a participant will make comparisons for their more preferred stimuli. 

There are several other algorithmic efforts to reduce the number of comparisons a participant 

must complete. These efforts often focus on synthetically completing a pairwise matrix (Kou et 

al. 2016) or other adaptive approaches (Qian et al 2015). 



 

 

 

Future work exploring different methods to derive preference or affinity or font attributes are 

necessary. While prior work has studied preference between fonts or line-spacing (Rello et al. 

2016 makeItBig), as discussed in Section 4.2, there are several additional font attributes that 

could possibly be explored ranging from character spacing, word spacing, to character width. 

6.2. Other Readability Methodology Considerations 

Readability studies are attended by a number of specific considerations which set them apart 

from other types of studies.  Here, we attempt to capture some of the most common issues that 

we feel are applicable to reading studies specifically.  

6.2.1 The Method of Constant Stimuli vs Thresholding 

An enduring feature of large-scale readability research is the large individual differences seen 

between participants (Wallace, et al., 2020). Readability researchers should keep such 

differences in mind when choosing between two broad methods to measure responses: the 

method of constant stimuli, or thresholding. The method of constant stimuli dates to the 

beginnings of experimental psychology and is straightforward (Spearman 1908; Sanford 1888, 

American Journal of Psychology). The researcher chooses levels of stimulus parameters based 

on predefined assumptions. Outcome data from such techniques allow for the estimation of 

psychophysical functions that map the relationship between stimulus levels and performance. 

However, data collection is limited by the number of trials that can be tolerably collected in a 

session (the more stimulus levels tested, the more trials required). Stimulus levels must be well 

chosen for the intended audience; e.g., a text contrast that is reasonably challenging for a 

younger participant may be too difficult for an older participant.  

Researchers may instead choose to employ thresholding or “staircase” procedures. With these 

methodologies, parameters of the stimulus are adjusted in real-time based on participants’ 

responses, with the goal of converging on a preselected response accuracy level. Staircasing 

rules (Levitt 1971; Leek 2001) can be employed to converge on several different accuracy 

levels. For example, if the experimental task is made more difficult immediately after a 

participant’s correct response, and made easier by the same amount after an incorrect 

response, the experiment will eventually converge on a stimulus level representing the 

participant’s 50% accuracy threshold. A threshold performance value can be determined for 

every participant without “wasting” trials with parameters that are too difficult or trivially easy. 

Techniques such as QUEST have updated the general thresholding procedure with more 

advanced statistical assumptions, allowing for faster convergence (Watson & Pelli 1983). 

However, if the “step” of the staircase (the amount by which stimulus difficulty is adjusted) is 

poorly chosen or if the staircase is initialized far from threshold values, it may fail to converge on 

a good threshold estimate. It can also be more difficult to estimate a full psychometric function 

from threshold data (Treutwein 1999). 



 

 

 

The method of constant stimuli and staircasing are two sides of the same coin. The former holds 

stimulus parameters constant while measuring changes in performance accuracy; the latter 

changes stimulus parameters in real-time while holding accuracy constant. Both have their 

place in the toolkit of legibility research. For an excellent detailed review of such methods, see 

Klein 2001, Perception & Psychophysics. Legibility researchers continue to use the method of 

constant stimuli (e.g., Dufau et al 2011; Reimer et al 2014; Sawyer et al 2020 complex 

backgrounds) as well as thresholding methods (e.g., Roethlein 1912; Sheedy et al 2005; Dobres 

et al 2016; Sawyer 2020 “Bake Off”). 

6.2.2 Time on Task, Fatigue, And Vigilance Decrements 

We do not read equally well all of the time, and so studies of readability must be sensitive to 

fluctuations of individual or aggregate ability.  People’s alertness levels vary throughout the day, 

and over the course of a task. Fluctuations in alertness affect cognitive performance and impact 

higher level cognitive capacities, including perception, memory, and executive functions 

(Kleitman, 1923). Hence, the ability to concentrate over the course of a study is subject to 

participants’ alertness levels. A lack of alertness can manifest itself in repeatedly re-reading 

sentences, troubles with comprehension, and visual fatigue symptoms.  Indeed, some tasks are 

highly demanding and produce their own fatigue, while still other ‘vigilance tasks’ create specific 

problems for human information processing which grow over time.  This “vigilance decrement” is 

often conflated with fatigue, but is a discrete effect which grows with time on task.  Vigilance 

effects are characterized by simplicity of stimuli, high rates of stimuli evaluation, and low rates of 

finding whatever “target” is the goal.  These types of tasks are often created inadvertently, 

require hard work, and are intensely stressful for participants, not qualities most scientists are 

looking to create in their experimentation (Warm, Parasuraman & Matthews, 2008). 

In considering time on task, eye trackers can be used to detect participants’ vigilance by 

tracking blinking rates, for example. Duration and frequency of blinks go up the more tired 

people generally are. Another way of testing alertness is the use of a psychomotor vigilance 

test, which tests the ability to sustain attention over time as much as psychomotor speed 

(Dinges, 1985). We designed and released an open-source test battery for collecting data on 

people’s varying alertness levels that can be adapted for reading studies (Dingler, 2017). 

Conducting reading sessions at ‘reasonable hours’ during the day, i.e., avoiding the early 

morning hours and the so-called ‘post-lunch’ dip, is advisable. Consumption of caffeinated 

drinks can affect alertness levels as well and should be controlled for (e.g., asking whether 

participants have had a caffeinated drink in the last hour). Howarth and Costello designed a 

survey to assess the subjective experience of visual fatigue symptoms, among others (Howarth, 

1997). Having participants fill in such a survey before study begins may alert the experimenter 

to possible confounds through a lack of vigilance. Taking frequent breaks before and between 

reading sessions is advisable. 



 

 

 

6.2.3 The Value of Pilot Studies 

It is essential to run pilot studies when studying readability.  Pilots inform the researcher of 

positive or negative aspects of their study, and indeed help researchers to understand whether 

it is worth pursuing the current design. As a researcher, respecting participants means 

respecting their time. Having participants engage in a study that does not work because it was 

not piloted is, arguably, ethically problematic. Hence, pilots are beneficial to researchers and 

future participants alike. 

It is essential to spend time and critical thought imagining how individual factors might affect 

your study, then prove these out in simple pilots. Time spent reading, reading positions, and 

reading passages can affect the participants across different study environments. How long 

does it take for participants to learn the interface and become comfortable? At what point in the 

study do readers naturally slow down or speed up? In a lab study with an eye-tracker and a 

headrest, participants might become uncomfortable quicker than if they were reading while 

laying down on their couch at home in a remote study. These factors affect behaviors and are 

multiplicative with other factors, such as whether a user is moving while reading or facing 

distractions.   

Pacing across a study can also be refined through pilots. Study length of reading studies can 

vary significantly across participants. Large individual differences in reading speed can cause 

these differences. One participant could read at 100 words per minute while another reads at 

700 words per minute. If the participant has to read 7000 words in a given study, one participant 

could take 10 minutes to read all the words while another takes 70 minutes. Understanding if a 

study's reading passages elicit these large differences can drastically affect the number of 

words a participant reads in a single study. For example, in recent work, readers have to slow 

down when reading passages normed to a higher reading grade level with more difficult 

comprehension questions. Understanding how participants slow down their reading speeds to 

answer comprehension questions will affect the average time they complete a study. Pilot 

studies can help to understand how many passages a participant needs to read before reading 

at a comfortable pace. Therefore, each study's training phase can be affected by the reading 

passages' difficulty and length.  Can allow a researcher to adjust failures across these factors 

and more, resulting in better data and a clearer understanding of the question asked. 

Another vital contribution of pilot studies is to help to determine the appropriate compensation 

provided to participants. As with many studies, monetary compensation is tied to the average 

time to complete. To provide fair and adequate compensation, a researcher has to make a 

difficult choice to compensate a participant based upon the average study time across all 

participants or the time it takes that single participant to complete the study. Compensating 

slower readers more might provide them an extrinsic motivator to slow down purposely. While 

extensive literature on compensation exists, in the field of readability there is little precedent for 

what is “correct”, and so pilots at varying levels of compensation may help researchers to zero 

in on ideal levels of participant compensation. 



 

 

 

When running readability study pilots, it is worth adding additional layers of data collection 

probing the experience of the reader subjectively.  Asking your participants how they felt, where 

they were confused, whether compensation was sufficient, or whether instructions were clear 

can be vital to understanding the root cause of difficulties with data.  We suggest asking these 

questions after the post survey, and if possible engaging in a free-form conversation with some 

or all pilot participants.  We also recommend engaging in your own research, in full.  

Researchers have many assumptions about the arc of their own research which can be 

challenged, and corrected, by putting themselves through all of the steps that their participants 

will experience. 

7. Research Design and Data Analysis 

 
Figure 15. Readability is highly multidisciplinary, and so design and analysis approaches vary widely. 

 

Not everyone who studies readability comes from the same scientific background, or indeed 

comes from a scientific background at all.  Therefore, the present section provides an aspiring 

readability researcher an overview of common research design, data quality management, as 

well as statistical and machine learning modeling approaches.  These examples have been 

gathered from existing readability research, but as the area is growing and multidisciplinary, the 

section is not intended to be an exhaustive list of the approaches which might be useful for 

readability researchers (Fig. 15).  We hope that the pooled experiences of the authorship 

provide useful starting points, extensions, and counterpoints for individuals at a variety of levels 

of experience, and a variety of fields. 



 

 

 

7.1 Common Research Design 

Methods for readability studies are diverse, and the exhaustive list may be as broad as all 

possible populations in all possible contexts. Therefore, we here briefly address three common 

methods which cover a useful range of reading contexts. 

7.1.1 Readability at-a-glance  

In many applications, such as reading street signs, directions, or text on the face of a watch, 

high speed and comprehension is essential for safety and efficiency. This regime is termed 

“glanceable reading, as reading occurs in extremely short periods of time, often less than one 

second. Performance in reading single words was studied by Dobres et al.  using a “staircasing” 

method to evaluate fonts and how fast single words can be read in them (Sawyer et al., 2017; 

Dobres et al. 2016). This method presented single words or pseudo-words (e.g. “thigma”), 

similar to the word recognition task employed by Meyer and Schvaneveldt (1971).  Such 

exploration of at-a-glance reading reveals valuable insights about optimal design for the kinds of 

reading that are done at speed. 

7.1.2 Readability in Opportunistic Interludes 

Reading of text that is in multiple sentences or longer falls in the regime of interlude reading or 

long-form reading. Reading relatively short blocks of text often occurs in interludes. These are 

slices of time between other activities or concurrent with other activities in a multitasking frame 

(e.g. Reeves et al. 2020). For example, while waiting in a queue, people will commonly 

consume news or social information for a few minutes. Methods for studying speed and 

comprehension in this regime differ from the psychophysical approach used to investigate 

glanceable reading. To study reading of short passages of text, Wallace et al. (Towards 

Readability Individuation) presented participants with passages of text in varying fonts, and 

measured how long it took for participants to read the passages. Each passage set was 

followed by a set of comprehension questions, to encourage participants to read with adequate 

comprehension, and providing a measure that could be used to disqualify data that did not meet 

a standard of adequate attention to the reading task. They found that participants’ fastest font 

could allow reading up to 32% faster than an individual’s slowest font, with relatively stable and 

high comprehension, between 86 and 94%. While the passages used by Wallace et al. were 

relatively simple, a similar method of timing reading of short passages can be used to 

investigate reading speed and comprehension of somewhat longer or more complex reading 

passages just as easily. 

7.1.3 Readability in Long Documents 

Longer texts, such as academic articles, legal briefs, or novels can be considered long-form 

reading, where reading is the focal task and any distraction from it is a secondary task. The 

methods employed by Wallace et al. (2020) are likely to be only partly applicable, as one often 



 

 

 

does not read an entire book in an uninterrupted epoch, as one can read a single paragraph or 

page without stopping. More sophisticated measures to assess the impact of type features on 

reading speed and comprehension in long form reading are needed, following research that has 

been ongoing for quite a long time in the reading science and cognition spaces. 

7.2. Data Quality Management 

Readability studies rely heavily on data quality.  Because many reported effects in readability 

are small to medium in effect size, it is necessary to repeat many trials within individuals, or 

collect very large groups of individuals.  Both situations provide plenty of opportunities for data 

quality issues. Not all participants perform their task with the same level of dedication, and there 

are high levels of individual differences in reading ability and strategy, both of which can result 

in data anomalies, or outliers. Defining and detecting outliers is something of an art, and must 

be tailored depending upon the study design and population. In studies which involve many 

trials within an individual, manipulation checks for effects of time on task or training effects must 

be undertaken. In studies with a large number of participants, especially those conducted on 

crowdsourcing platforms, care must be taken to screen for participant dishonesty (Peer et al. 

2017), uncontrolled settings (Schneegass and Draxler 2021). In both cases, and in all reading 

and readability studies, individuals at both extremes of reading abilities skew the analysis 

(Carver 1990). In general, data quality issues can be mitigated through careful planning, 

piloting, and in studies with significant data collection time, ongoing data quality assurance. 

 

A common statistical approach to handling outliers is to assume normal distribution on the data 

and isolate points that fall 3+ standard deviations from the mean (Stevens 2012). These points 

can then either be filtered out or reported on separately, depending on the experiment. 

Researchers can also leverage anomaly detection methods during data pre-processing. For 

instance, in the case of reading speed data, outlier removal can be done based on domain 

knowledge of expected reading speed distributions. Typical reading speeds for participants over 

the age of 18 range from 138 to 600 wpm (Carver 1990) with an average speed for native 

English speakers at 240 words per minute. Participants whose speed falls outside of this range 

might be distracted or disengaged from the material, and may be removed from the analysis. Of 

course, it is also important to pilot and understand what “good” looks like in the particular 

context of the study at hand. 

 

Variability within a particular participant’s data poses a significant challenge for analysis, and 

should create concern for similar patterns across participants in the entire study. When a similar 

task is repeated by an individual multiple times, the random error associated with the repeated 

measurement of independent performance factors, such as attention (Raichle et al., 2001; 

Buckner et al., 2008; Christoff et al., 2009; Killingsworth and Gilbert, 2010), can attenuate the 

association between independent and dependent variables and result in poor statistical 

inference (Barnett et al., 2005), a bias known as regression dilution (Hutcheon et al., 2010; 

Berglund, 2012). In general, unusually high intra-participant variability may also be a sign of 

problems with experimental design, and common confounds such as unmet training 
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requirements, excessive time on task, uneven population reading ability, and technical failures 

should be investigated, among others. 

7.3. Exploration and Visualization 

 

Readability data is best initially analysed through Exploratory Data Analysis (EDA), which can 

help determine data quality, assist in numerical analysis, or build hypotheses for further 

investigation. Exploration must take into account the nature of readability data, and must 

respect any a priori plan for analysis. While inspection of raw readability data in a tabular format 

can actually be revealing, we have found a few specific visualizations helpful for revealing 

interesting patterns. Because readability data is often collected over time, across environments, 

and between devices, we see opportunities to use spatio-temporal illustrations to explain the 

complex emerging patterns, heatmaps to visualize one-time movement patterns shared across 

users, or sankey diagrams to incorporate higher levels of complexity in participants’ shared 

journeys across different stages of the reading process. We believe many other novel 

visualizations can also help represent eye and mouse movement data on the reading interface, 

where the areas with more attention can be highlighted by warmer colors (Blignaut, 2010; Burch 

et al., 2019). When a common reference frame such as the location at the start of the text is 

defined, proximity-based visualization can reduce the spatial dimension on a regular 2D map, 

integrating the temporal dimension for easy comparison across users (Crnovrsanin et al., 2009).  

7.4. Statistical Modeling 

So long as the tools are used appropriately relative to the data collected, we do not yet see any 

strong place for the dominance of any statistical approach.The data analyses needed for 

readability experiments examining the effect of visual manipulations on outcomes such as 

speed, comprehension, and preference are similar those used throughout the social sciences.  

The standard practice for statistical analysis is to start with numerical and graphical techniques 

for estimating the distribution of the data and determining the best mechanism accordingly. A 

simple Kolmogorov- Smirnoff test can determine whether readability scores such as reading 

speed and comprehension are normally distributed. Parametric tests, in the case of normality, 

and non-parametric tests, otherwise, are often used in the readability research studies 

(Soleimani, 2009; Soleimani et al. 2012), and indeed the non-normality of distributions of many 

metrics may not be cause for concern, so much as cause for use of the appropriate tools. 

 

There is no prescriptive statistical tool for readability research, which is commonly analyzed with 

multiple generalizations of the general linear model (GLM). Many studies rely upon multiple 

analysis of variance (MANOVA) to isolate the impact of independent variables (IVs) upon 

multiple dependent variables (DVs), often including both reading speed and comprehension 

(Wallace et al. 2020; Nam et al. 2020; Rello, Pielot, and Marcos 2016; Sawyer et al. 2020; Gao 

et al. 2019). It’s not uncommon to augment these larger analyses with smaller “manipulation 

checks” which rely upon t-tests or simple analysis of variance (ANOVA) to test out assumptions.  
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In determining how manipulations affect populations across continuous variables, it is certainly 

appropriate to use regression analysis.  Indeed, in usability studies where a simple question of 

“A or B” is of interest, and where multiple DVs are not used, a simple t-test can suffice. 

Readability, as an inherently multidisciplinary area of inquiry, should ultimately be modelled 

using the tools most familiar to the researcher investigating. 

7.5. Machine Learning 

For research that aims to assist participants in improving readability, it can be useful to evaluate 

the performance of statistical and machine learning (ML) models that can predict reading 

outcomes. Consider one question in the literature: given a font style, can a participant’s reading 

speed be predicted (Cai & Wallace, 2021)? Here, regression models which predict the 

relationship between input and output variables might be used to predict participants’ reading 

level from their reading speed. This regression question would be valid in statistical and ML 

approaches alike, and indeed the outcomes of these two approaches might be notably similar. 

Classification ML allows the prediction of a label for a given set of input variables, and so in the 

context of readability might be useful for predicting the “bin” into which such an input set might 

fall. A simple binary classification might detect whether a participant is skimming, or reading 

deeply, given their reading speed. Similarly, using ranking ML, a given set of input can predict 

an ordered set of labels. . In more sophisticated learning models, ranking ML can predict the 

relative ordering of labels by either comparing pairs of inputs at a time, or by comparing the 

entire set of labels associated to our criterion.(Liu 2007). Consider ranking the fonts for each 

person in a way that the most readable font for a particular person is ranked first, and the least 

readable is ranked last. Clustering ML groups similar items together, perhaps providing groups 

of similar readers and identifying populations in need. A full survey of traditional approaches can 

be found in (Rui Xu and Wunsch 2005) with authors often using the classical approach of K-

means. More recently clustering research has focused on a subfield known as metric learning 

that learns a feature representation where neighboring items are closer together in feature 

space. Of course, as with statistical tools, ML approaches are best used together to achieve 

complex goals of prediction. 

 

ML tools in the family of so-called Deep Learning approaches, multi-layer and often 

convolutional ML which advance the state-of-the-art for each approach named above, have 

special considerations (LeCun, 2015). Data hungry, building models using these approaches is 

challenging for small and medium datasets. When properly attached to truly big data, these 

methods do allow very large parameter models to optimize a loss function, thus maximizing 

prediction accuracy, they are challenging in terms of transparency.  Indeed, what these models 

give in prediction they take away in terms of understanding the causal reason for their 

explanation, and specifically in terms of understanding which features are important (Samek, 

2017). While there is much work to bypass these shortcomings, for the moment more traditional 

ML approaches may be a better path for researchers interested in understanding why their 

models function, and building their ML approaches out of modestly-sized datasets.  
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7.6. Complementary Expertise 

One common experience that unites the authorship of the present work is the great benefit to 

multidisciplinary working groups investigating readability.  Readability is a complex topic, 

touching upon engineering, physiology, neuroscience, psychology, social science, education, 

and still more fields.  Experts come with their own viewpoint, their own tools, and their own 

recipes for research design and data analysis. There is a lot of give-and-take in the most 

successful readability projects, which to our mind is the point: the most valuable revelations in 

this topic area are certainly at intersections between established fields. As such we encourage 

as follows: explore together.  If research is not your first calling, find a supportive researcher.  A 

graduate degree which includes research goes far beyond the scope of this section.  If machine 

learning is not your first calling, strike up conversations with those with a talent for this rapidly 

emerging toolset.  If design and typography are foreign to you, have conversations with those 

that are fluent in the building blocks of readability.  All this is not to say that a determined 

individual cannot design good readability research and adequately analyze the resulting data 

alone.  We simply suggest that this journey may be more  rewarding for diverse, like-minded 

partners. 

 

8. A Call for Further Research 

Figure 16. The growing readability research community is still early in building understanding. 

 

Digital devices and the way they are connected are rapidly changing the availability and access 

to information. Now more than ever, the ability to read - and to do so efficiently - has a direct 



 

 

 

and dramatic impact on education, health, and career outcomes. At the same time, digital 

devices provide an opportunity to create new personalized reading environments to build 

capacity for all readers, including proficient and non-proficient, and even those who do not think 

of themselves as readers at all (Fig. 16). 

  

Rather than one-format-fits-all, there is an opportunity to individuate both for the reader 

and for the reading context. Prior reading studies have contributed significantly to our 

understanding of how typographical variables affect readability. However, prior work has 

focused on the idea that big change, such as font, can benefit all readers. We, however, 

suggest a shift: modern reading research must evaluate how small changes to text format on an 

individual basis can create significant outcomes for the reader and that these variations of text 

may be different, depending on the  content, device and reading context.  As devices, 

applications, design trends, and typography have evolved, we can revisit prior research to 

adjust or expand upon previous findings. 

 

Multidisciplinary shared research is required. Readability is a complex field of research that 

requires a multidisciplinary approach. In this paper, we provided a taste of the elements that 

must come together to form a readability study, including: the preparation of reading materials 

and typographic decisions; the selection of study participants and considerations for human 

subjects research; the hardware devices and software platforms on which the studies can take 

place, together with instrumentation for evaluation (e.g., eye tracking and neuroimaging); the 

experimental methodologies that can provide a systematic evaluation of reading behaviors 

across study conditions; and the interpretation of the reading data to build both inference and 

predictive models. 

 

Readability studies can range in complexity from simple timed studies to sensor-heavy scientific 

investigations, from small scale laboratory studies to large online studies with hundreds or 

thousands of participants; and such studies can be focused on individuals, specific 

subpopulations or mainstream populations, reading on desktop, mobile, or wearable devices. 

Therefore, an understanding of perceptual science, human factors, reading subject matter 

expertise, design, neuroimaging, statistics, software engineering, sensors and systems as well 

as machine learning must come together to use sound methodologies across disciplines to craft 

meaningful experiments and experimental platforms as well as correctly interpret results.    

 

There is a need for research, investment, and standardization. The authors call for further 

research and study, and investment by education, industry, government, and policymakers. 

Scientists and practitioners from industry and academia, as well as creatives and type designers 

can come together to make better readability a reality for all. The scope of readability research 

is vast, and the methods are varied. We wrote this paper to map out the best practices and 

methodologies available to readability researchers to both inform and hopefully to standardize 

both practice and data collection. 

 

Publicly available data and tools are required for reproducible readability research. We 

urge communities of researchers, engineers, and designers to release reading content, 



 

 

 

typography, experimental designs, software platforms, analysis tools, and computational 

models. This will allow other groups to benefit from subject matter expertise, to run more 

controlled and reproducible studies, and to compare results across populations, context, and 

settings by virtue of a common set of tools. As we develop recommendations of formats, 

mapping individual characteristics to readability features, the benefits should be made available 

to all readers by all relevant technical partners. Together, let us engineer better reading for 

everybody. 

 

Join the readability research community. The authors invite you to collaborate: 

●  Make use of the free Virtual Readability Lab toolset for testing reading 

populations. Contact Dr. Ben D. Sawyer for more information. 

● Contact the team at Readability Matters to have your research highlighted on the 

Readability Matters Research page. 

● Follow the work of The Readability Consortium. 
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